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Summary  

Household surveys are widely used as a tool for obtaining information on people's socio-economic 
status and well-being. However, the accuracy of household survey estimates decreases significantly 
when it comes to making inferences for population groups who represent disaggregations for which the 
survey was not designed. It is possible, in this context, to use estimation processes that combine 
information from household surveys with existing auxiliary information at population level, such as 
censuses or administrative records.  

This paper offers a methodological guide to the combination of survey statistical techniques with 
probabilistic models in order to produce disaggregations for interest groups, known as small area 
estimation (SAE) techniques.  

A description of the problem of disaggregation when there is insufficient data is followed by a 
discussion of three techniques for achieving the proposed objective. Firstly, there is a review of the 
direct estimators (adapted directly from the surveys), which have the advantage of being free of bias, 
albeit with low accuracy, when disaggregation is applied. Next, there is an analysis of some so-called 
indirect estimators, whose functional form is similar to that of the direct estimators, except that they 
rely on auxiliary population information to improve accuracy. Following this, probabilistic models are 
introduced to improve the statistical properties of estimators of interest. Modelling can be done at two 
levels: at the level of the individuals of interest (households or persons) or at the level of disaggregation 
categories (subgroups of interest). This discussion of the theory includes illustrations and examples 
which are supported by R statistical software. 

Finally, a practical application is offered for some of the methods reviewed and conclusions are 
drawn regarding the feasibility of their use in this specific problem.
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Introduction 

Household surveys provide fundamental information for measuring the living conditions of a country's 
population and are an essential tool for defining and monitoring public policies in several areas. As a 
source they make it possible to generate accurate and unbiased information at a national level and for 
the disaggregations considered in the survey design. 

There is a growing demand for information for specific population groups and smaller 
geographical areas. For example, the global framework of indicators for monitoring the Sustainable 
Development Goals states that information should be disaggregated not only geographically (in 
subregions of interest such as provinces, municipalities, or districts), but also by income group, sex, age, 
race, ethnic origin, immigration status and disability status. However, the reliability of inferences drawn 
from the indicators decreases as the sample size decreases, so it is generally not possible to achieve the 
desired levels of disaggregation with a suitable accuracy.  

Thus, in the last decade, there has been a rise in the concept of data disaggregation, meaning 
numerical information that has been collected from different sources, or measured by means of multiple 
variables or even different units of observation and that is compiled in an aggregated and summarised 
form. The purpose of this aggregation is to present society with estimates of interest that have good 
statistical properties which can be used to extract information and even formulate public policies in each 
of the subgroups of interest. 

This document serves as a guide for the disaggregation of statistical data related to the living 
conditions of individuals, whether geographically (at a regional level) or by population subgroups. 
Chapter I begins by describing the problem of disaggregation of statistical data (section I.A); specifically, 
it describes exactly in which situations this problem occurs and defines the terms and concepts that are 
commonly used and that will also appear throughout this paper. Section I.B goes on to establish up to 
what level it is suitable to disaggregate the statistical data, given that, due to the decrease in sample 
sizes, as the direct estimates are disaggregated, the sampling errors increase, thus rendering these 
estimates too volatile and therefore unreliable. For example, let us consider a population divided 
successively at different levels; Spain, for example, is divided into autonomous communities which in 



ECLAC - Statistics Series No. 97  Disaggregating data in household surveys… 10 

 

turn are divided into provinces; these are divided into regions, and finally the regions are divided into 
municipalities. In the European Union as a whole, the common nomenclature NUTS (Nomenclature of 
Territorial Units for Statistics) is used and countries (NUTS 0) are divided into regions called NUTS 1, 
NUTS 2, etc. Section I.B provides indications on the maximum level of disaggregation of direct 
estimates at which indirect estimates would come into play. The latter are much more reliable because 
they use different data sources to borrow information from all areas. The extent to which it is advisable 
to use these indirect estimators is also discussed, as it is advisable to contain the possible bias of these 
estimators. Thus, recommendations are made concerning cases where it would be prudent not to 
produce any estimate. In any case, the survey can be redesigned to give a more comprehensive 
coverage of the domains for which statistical data is required. It should be borne in mind that, at a local 
level, the information or knowledge possessed by local communities could contradict the data provided. 
It is, therefore, essential to establish to what extent it is advisable to disaggregate the estimates so that 
the data produced is of sufficient quality and realistic, without straying too far from local knowledge. 
Finally, section I.C contains a review of the various methodologies that provide indirect estimates which 
go beyond the limits of disaggregation of direct estimates. Specifically, a review is made of the basic 
indirect estimators, which include synthetic and composite estimators, and model-based estimators, 
which are perhaps most widely used for obtaining reliable estimates at highly disaggregated levels. 
“Model-assisted" estimators, which use a working model but do not require goodness-of-fit of the 
model in order to maintain their unbiasedness, are dealt with in Chapter III along with direct methods, 
as they have good theoretical properties for large sample size areas.  

Chapter II reviews various indicators dealing with individual quality of life; specifically, 
measurements of poverty and inequality. A family of poverty measurements, called the FGT family, is 
defined in more detail and will be used to illustrate the various procedures in the following chapters. A 
description of each procedure will explain how it would be applied to the estimation of indicators of this 
family and, for some of them, examples will be made using the sae (Molina and Marhuenda, 2015)                 
R package, which the reader can copy.  

Chapter III then gives a detailed overview of the usual direct estimators. Basic direct            
estimators such as the Horvitz-Thompson and Hájek estimators (section III.A) are included, as well as 
model-assisted estimators; specifically, generalised regression estimators and calibration estimators         
(section III.B), together with estimators of their sampling errors. The computation of direct estimators 
in R is illustrated by means of two examples.  

Chapter IV reviews some basic indirect estimators such as the synthetic post-stratified estimator 
(section IV.A), synthetic area-level (section IV.B) and individual-level (section IV.C) regression 
estimators, and composite estimators (section IV.D). These estimators are included only because they 
provide a simple illustration of the ideas underlying the more sophisticated methods included later in 
Chapter V. Again, two examples are included that demonstrate the calculation of synthetic and 
composite post-stratified estimators. 

The model-based methods in Chapter V are significantly more realistic than the basic indirect 
methods and are better suited for use in real applications as they provide potentially less-biased 
estimates. Model-based methods include estimators based on the most popular area-level model 
(section V.A) and those based on the basic individual-level model (section V.B). There is a demonstration 
of how to obtain these estimators in R using three examples. This section includes the ELL method, 
traditionally used by the World Bank to estimate poverty and/or inequality indicators (section V.B), since 
in principle this method considers the basic model at the level of the individual. However, as we shall 
see, this method is essentially synthetic, and should therefore perhaps be included in Chapter IV which 
deals with synthetic estimators. There is also a description of the EB method (section V.D), which 
estimates general indicators in the same way as the ELL method but improves on this method by 
considering that there is heterogeneity between areas and, consequently, produces more accurate 
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estimates. The HB procedure in section V.E obtains estimates very similar to the EB method but             
with lower computational cost in the case of large populations, especially when it comes to                
providing the error measurements (mean squared error) of these estimates. Finally, section V.F outlines          
specific methods for estimating indicators that take the form of proportions or means of                            
binary variables. Although in principle other methods can be used to estimate these indicators, such as 
those in sections V.A or V.B, these can generally provide estimates outside the natural area of a ratio. In 
some cases, the estimates obtained by different methods may differ only slightly.  

On the other hand, some of the methods described are only applicable to linear indicators, i.e., 
they are additive in the values of the variable of interest for the units of the area, as means or totals. 
Other methods, such as the individual-level model-based methods ELL, EB and HB in sections V.C, V.D 
and V.E, are designed to be able to estimate general indicators defined as a function of the values of a 
continuous variable (e.g., income) in the units in the area; values for which a model is assumed. Methods 
based on area-level models are, in principle, applicable to many types of indicators, as long as the 
necessary assumptions are verified, but in practice it is difficult to verify such assumptions (such as the 
unbiasedness of direct estimators) for non-linear indicators. Therefore, in principle, they are more 
suitable for the estimation of area means or totals. In any case, after each method is described, there is 
a summary which specifies the indicators to which it might be applicable, the necessary data 
requirements other than observations of the variable of interest obtained from a survey, and the pros 
and cons of each method compared to methods that would be applicable to the same type of indicators.  

It should be noted that it is not possible to give a detailed description of all existing 
methodologies due to limited space. A detailed description of some of the most widely studied methods 
having the right properties is included. These will help in the understanding of more complex methods. 
Some of the extensions of these main methods are cited, redirecting the reader to the corresponding 
bibliography should further information be required. Methods with unknown theoretical properties are 
not included, even though they may be promising. Nor are there details for procedures that require 
excessive mathematical formulation, such as the estimation of the mean squared error of the estimators 
in Chapter IV and section V.B. In both cases, the reader is redirected to the bibliography where this 
material can be found. In the case of the basic indirect estimators in Chapter IV, another reason for not 
including such material is that there are no known reliable estimators of the mean squared error of the 
estimators that are also different for each area. There are estimators that are excessively unstable but 
different for each area, or stable but the same for all areas, but not both at the same time. So, this is an 
unresolved problem.  

An important clarification should be made regarding the approach used for evaluating the quality 
of an estimator. There are three alternative approaches for evaluating the properties of estimators, but 
often each type of estimator is evaluated using only a measurement calculated in respect of the natural 
approach for this estimator. The direct and basic indirect estimators are evaluated in respect of the 
distribution of the sample design, i.e., in respect of all possible samples that can be drawn from the 
population using the particular survey sample design. In this case, the values of the variable of interest 
in the units of the population are considered to be fixed values and only the units that are selected for 
the sample vary (according to a randomised procedure). A good estimator is, thus, the one that has a 
good average performance for all possible samples, with the values of the variable in the population 
units fixed.  

On the other hand, model-based estimation methods are evaluated in respect of the distribution 
triggered by the considered model, conditionally on the observed sample. In other words, the values of 
the variable of interest in the individuals of the population are considered to be random and are 
generated by a model known as a superpopulation model. According to this approach, the census of our 
variable is a possible realisation of a random vector that follows a model (or probability distribution). 
The estimators are evaluated with regard to all the possible censuses generated by the model in 
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question. In other words, a good estimator would be one that performs well on average for the infinite 
possible censuses of values of the variable of interest generated by the model, leaving the individuals 
that appear in the sample constant (although their values of the variable of interest vary, since they are 
extracted from a census).  

Finally, Bayesian methods, such as the HB method in section V.E, are evaluated conditionally on 
the observations of the variable of interest in the sample (posterior distribution). In other words, an 
estimator will be evaluated with regard to the distribution of the conditioned indicator to the available 
data, rather than averaged over the possible values of that data.  

There is no consensus on what is the best approach for evaluating small area estimators. The 
“under sample design" approach is non-parametric as it assumes no model. This means that the error 
measurement provided under this approach (usually the mean squared error) captures the estimation 
error across the possible samples, without the need for model checking. This is the approach preferred 
by government agency statisticians. The “under the model" approach assumes a model, but fixes the 
sample obtained, providing the error for the particular sample one has, rather than an average for all 
possible samples that could be drawn. With this approach, the measurement of error captures the 
uncertainty throughout the possible censuses that the model generates, i.e., through the possible 
realities that could occur, with the values observed in the sample also varying. Finally, the Bayesian 
approach considers the indicators in question to be realisations of random variables that follow a 
distribution, and provide measurements of error in the form of descriptives of the distribution of those 
indicators, conditional on the observed values of the sample, i.e., for the particular sample observations 
that have been obtained, rather than averaged over all their possible values.  

As stated above, each estimation method is usually evaluated on the basis of its natural approach. 
In other words, the error measurements that accompany the estimates to assess their quality; 
specifically, the mean squared errors, are usually calculated with regard to the approach used for 
obtaining the estimates. This means that the mean squared errors of different estimators, having been 
obtained using different approaches, are not directly comparable. However, it is known that, if the 
hypotheses assumed by the considered models are verified, these mean squared errors are, in fact, 
comparable when averaged over a large number of areas of the same sample size. In addition, the mean 
squared errors under the design of model-based estimators are not easy to estimate and no acceptable 
estimators are known. On the other hand, by performing a prior model check to verify that the model 
fits the available data adequately, the estimators of the mean squared errors under the model, which 
are relatively stable, can be compared with the mean squared errors under the design. 
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I. The problem of data disaggregation                                
(or small-area estimation) 

A. Description of the problem 

Official surveys conducted by National Statistical Institutes, as well as by Regional Statistical Institutes 
and other agencies or institutions at a supranational or international level, are designed to produce 
statistical data at a particular level of aggregation for either geographical or socio-economic 
subdivisions of the population. For example, the Socio-economic Conditions Module (Módulo de 
Condiciones Socioeconómicas (MCS)) of Mexico's National Survey of Household Income and Expenditure 
(Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH)) is designed to provide estimates of 
poverty and inequality indicators at a national level for all 32 states (31 states plus Mexico City) 
disaggregated by rural and urban areas, every two years. However, in this country there is a requirement 
to produce estimates every 5 years at municipality level. This situation also occurs frequently in other 
countries and areas which means that, once a survey has been conducted, with sample sizes established 
to produce reliable estimates at a given level of aggregation, a demand for data at a more disaggregated 
level is subsequently produced. To do so, we want to be able to use the data from this survey without 
incurring additional costs due to an increase in the sample. However, in the case of Mexico, the ENIGH 
subsamples taken from each municipality do not allow for reliable direct estimators to be obtained in 
all of them and, in fact, more than half of the municipalities lack observations. This is the problem that 
often arises when one tries to produce statistical data for smaller subdivisions than originally planned.  

To avoid this problem to a certain degree, aspects of the sample design could be improved prior 
to carrying out the survey. For example, it is possible to increase sample sizes in areas where this is 
necessary (with a corresponding increase in cost) or to distribute the total survey sample size across 
areas more efficiently. Although there are various mechanisms for improving the sample design and 
having a sufficient minimum of data in all subdivisions of the population, “the client always demands 
more than what has been specified at the design stage” (Fuller, 1999).  
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In the literature, the subdivisions for which statistical data (or estimates) is required are 
commonly referred to as "areas" or "domains", regardless of whether they are geographical or socio-
economic demarcations. When estimating a specific indicator in one of these areas, we use the term 
direct estimator to describe an estimator that uses only the survey data for that area. The usual direct 
estimators are unbiased or virtually unbiased in respect of the distribution of the sample design,              
i.e., across all possible samples that can be drawn from the population using the corresponding sample 
design. However, if the survey was not planned to estimate at such a disaggregated level, the sample 
size in some of the areas may be too small, resulting in excessively large sampling errors for the direct 
estimators of the indicators of interest in those areas. The areas where this occurs, regardless of 
population size, are referred to in the literature as "small areas". Therefore, it is not the population size 
of the area that confers the adjective 'small' since, in many cases, areas of large population size             
(e.g., states in the USA) are considered as 'small areas' if direct estimates of sufficient quality are not 
available. Specifically, the term "small area" refers to areas, in which the direct estimator of the indicator 
of interest is inefficient due to the insufficient number of observations obtained (or surveys conducted) 
in that area. For example, when it comes to producing estimates of poverty and inequality indicators 
based on the Socio-economic Conditions Module of Mexico's ENIGH, municipalities would be 
considered small areas, since the survey is not designed to obtain precise estimates for them. 

Estimates at a very detailed geographical level are often represented in the form of cartograms 
or maps showing the corresponding regions with different shades or colours representing different 
degrees of magnitude of the indicator of interest. For example, the World Bank produces disaggregated 
poverty or inequality maps for many countries, (see e.g., Elbers, Lanjouw and Lanjouw (2003)). These 
maps, as well as the specific estimates, are an essential tool for monitoring living conditions in the 
different regions of a country and are used by governments and international agencies to plan regional 
development policies. It is highly recommended to supplement estimates with measurements of 
estimation quality (usually sampling errors). As with estimates, these can also be plotted on a map.  

B. Limitations to the disaggregation of statistical data 

Although there is no formal definition, an area is referred to as "small", as stated above, when the 
sampling error of the direct estimator considered for the indicator of interest is not acceptable. 
However, there is no universal upper limit for this sampling error, above which the area where it is 
estimated is considered as "small". Each National Statistics Institute or international agency establishes 
its own limit for the relative sampling error or coefficient of variation (CV), above which statistical data 
is considered unreliable and therefore is not published. This data is sometimes published with some 
indication that it lacks the required quality. Nor is there a specific sample size below which the area is 
considered small, since the sampling error varies depending not only on the sample size, but also on the 
indicator that is being estimated and the specific estimator that is used. For example, when estimating 
the mean of a continuous variable (e.g., mean income) with a given maximum sampling error, a smaller 
sample size is often needed than for estimating the proportion of individuals possessing a given 
characteristic (mean of a binary variable), especially if that characteristic is very rare or very common, 
i.e., when the actual proportion is close to zero or one.  

Figure 1 illustrates the minimum sample size needed to obtain a specific maximum CV for the 
sampling proportion under simple random sampling. The required sample size is seen to vary depending 
on the true value of the proportion to be estimated. Specifically, this graph shows how, in the case 
where the true proportion is 𝑝𝑝 = 0.5, a sample size of about 𝑛𝑛 = 25 is sufficient to ensure a CV of the 
sample proportion below 20%, whereas for 𝑝𝑝 = 0.2 at least 𝑛𝑛 = 100 units are needed, and for 𝑝𝑝 = 0.1 
more than 𝑛𝑛 = 200 units are needed in the sample. Therefore, it is not possible to establish a minimum 
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sample size of the areas that guarantees the desired level of efficiency for any estimator and/or any 
objective indicator. 

Figure 1 
CV of the sample proportion 𝒑𝒑� according to sample size 𝒏𝒏, for each value of the true proportion 𝒑𝒑 

(In percentages) 

 
Source: Prepared by the author. 

In particular, some common poverty indicators are proportions. For example, the poverty 
incidence, also called the rate of individuals at risk of poverty, is the proportion of individuals with 
incomes below the poverty line. This threshold is the value of (equivalised net) income below which an 
individual is considered to be at risk of poverty or exclusion. Similarly, certain types of deprivation are 
measured as the proportion of individuals with access to certain basic services such as health, housing, 
and food. As already stated, the sample size needed to obtain direct estimates of these indicators with 
sufficient quality is usually larger than that needed to estimate means or totals of quantitative variables.  

Although there are no universal upper limits for sampling errors (and no lower limits for sample 
sizes) above which statistical data is of insufficient quality, some National Statistical Institutes agree 
that data is "unsuitable for publication" when its relative sampling error or CV exceeds 20%. Thus, for 
these institutions, areas for which direct estimates of a given indicator of interest have a CV greater than 
20% would be considered "small" for these indicators. For example, Mexico's municipalities would be 
small areas when estimating poverty indicators from the ENIGH. In these areas, it would be necessary 
to increase survey sample sizes or use 'indirect' methods in order to produce statistical data of a 
sufficient quality for publication.  

Not only do “indirect” estimation methods consider sample data from the domain or area of 
interest, but they also use sample data from other areas or domains. These estimators use information 
from other variables (known as auxiliary variables) that are related to the variable of interest. This 
relationship is considered similar for all areas and is shown by a model that links them by means of 
common parameters. By estimating the parameters common to all areas using all the data in the sample 
(overall the sample is usually large), the use of a greater amount of information provides more efficient 
estimators (compared to direct ones). These estimators tend to slightly compromise the bias under the 
design, in exchange for greatly increasing the overall efficiency of the estimator, evaluated in terms of 
mean squared error.  
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The improved efficiency of indirect estimators with respect to direct estimators is greater the 
smaller the sample size of the area. However, these tend to improve in most areas, including many with 
large sample sizes. In fact, some indirect estimators (see Chapter V) have the useful property of 
converging to a direct estimator as the sample size of the area increases. Indirect estimators that 
possess this property can, therefore, be used for all areas, regardless of whether they are "small" or not, 
thus reducing the importance of having a more exact or more formal definition of “small area”.  

In practice, however, one must determine the level of disaggregation to which it is suitable to 
continue using conventional direct estimators, the level at which to resort to indirect estimators, and 
even, if it is suitable, to produce statistical data for any possible level of disaggregation, which at the 
limit would be at the individual level. In virtue of the above, it is advisable to use the direct estimators at 
the level for which the CVs of these estimators do not exceed the limit established for any of the areas. 
If the aforementioned limit for any areas exceeded, it would be more advisable to use indirect 
estimators for the areas of that level.  

It should be emphasised that it is not advisable to produce estimates for any area because, if the 
model cannot be verified exactly (virtually no model is exactly true), the bias under the design of indirect 
estimators increases as the sample size decreases. Although the mean squared error of the indirect 
estimators remains smaller than that of the direct estimator, it is not advisable to overly compromise 
the bias under the design. It, therefore, makes sense to set an upper limit for the relative absolute bias 
of an indirect estimator and decide not to produce data for areas where that limit is exceeded. This limit 
will be set according to the requirements of the data user (e.g., 10% or 5% of relative absolute bias). It 
is, therefore, recommended:  

• To use the direct estimators for the entire population and for the higher levels of 
aggregation, as long as the direct estimators for all areas of that level have a CV below 
the established limit.  

• For more disaggregated levels, we will use indirect estimators in areas for which the 
relative absolute bias does not exceed the pre-set maximum amount. 

• Finally, for areas where the indirect estimators have relative absolute bias above the 
maximum amount, it would be advisable not to produce estimates or to modify the 
survey design in order to achieve a minimum sample size in all areas of interest. 

The bias under the design of an estimator is not known as it depends on the true value of the 
indicator in question. In some cases, it can be approximated theoretically. Another option is to obtain it 
empirically using simulation experiments. These experiments can be carried out by simulating the facts 
as far as possible, e.g., based on a previous census or by using survey data to generate a census and 
drawing samples from it. These experiments have a very important additional use, which is the 
validation of estimation methods in situations where the true values are known. In both cases, it is 
possible to determine the required minimum sample size of the areas that would avoid exceeding the 
upper limit of the relative absolute bias of the estimator of the indicator in question, (see section V.A). 
Thus, when producing estimates with the actual data, indirect estimators would only be used in areas in 
which the sample size exceeds this minimum sample size.  

C. Methodologies for overcoming the limitations of disaggregation 

As previously stated, if the aim is to avoid sample increases due to the corresponding costs, or if the 
demand for data at a more disaggregated level has occurred after the survey has been conducted, a 
cost-effective way to obtain more reliable estimators for all areas of interest than direct methods is to 
use indirect methods. These methods do not only use the survey data for the area concerned but use 
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data from other areas that have some similarity to the area in question. This similarity is usually 
illustrated by means of a model (representing a set of hypotheses). The simplest indirect estimators are 
based on unrealistic assumptions and may therefore have considerable bias. These include synthetic 
estimators, which do not take into account the heterogeneity that usually exists between areas.            
Well-known synthetic estimators are the synthetic post-stratified estimator and the synthetic 
regression estimator (Chapter III). Other classic indirect estimators are the composite estimators, which 
are calculated as a weighted average between a direct estimator and a synthetic estimator, and include 
the known sample size dependent estimator or the optimal composite estimators. The weight given to 
each estimator does not depend on the goodness of fit of the model assumed by the synthetic 
estimator. Moreover, in practice the weight of the direct estimator is usually close to one and, therefore, 
little information is borrowed.  

Slightly more sophisticated indirect estimators, which take into account the existence of diversity 
between areas, are those based on regression models. There are two main groups of regression models 
used for estimation in small areas: area-level models and individual-level models, although it is also 
possible to establish models at intermediate levels of aggregation (e.g., by sex/age groups within areas). 
Area-level models only use aggregated data for estimation areas or domains. This type of data can, 
typically, be obtained with fewer restrictions since aggregation avoids confidentiality issues. The              
so-called Fay-Herriot (FH) models, advanced by Fay and Herriot (1979), are very widely used linear 
models at the area level. These models have a two-level structure. At the first level, the relationship 
between the indicators of interest for the areas and the available area-level auxiliary variables is 
considered to be constant for all areas. For example, the decrease in average earnings from being 
employed to being unemployed is considered, all other things equal, to be the same in all areas. Thus, 
all areas are connected through a linear regression model. At the second level, it is assumed that, given 
the true values of the indicators of interest, the direct estimators of the areas are centred on these true 
values and have variances that are assumed to be known. Such variances typically vary between areas 
due to the fact that the sample sizes of the areas are different. These models have been deservedly 
successful because the resulting estimators for the areas are a composite or weighted average between 
the direct estimators and the synthetic regression estimators. When the synthetic model does not fit 
the data well (i.e., the considered auxiliary variables do not sufficiently explain the heterogeneity of the 
indicator across the areas) or the sample size of an area is large, the FH model-based estimator gives 
more weight to the direct estimator, which is sufficiently accurate. Conversely, when the synthetic 
model fits well or the area sample size is small (imprecise direct estimator), the weight given to the 
synthetic regression estimator increases. In this case, efficiency is increased due to the fact that the 
synthetic estimator has a regression coefficient that is common to all areas and is, therefore, estimated 
using data from all areas. Furthermore, since the direct estimators are approximately unbiased with 
regard to the sample design, for areas with larger sample sizes, the estimators obtained from the          
Fay-Herriot model also maintain a small bias under the design. One of the difficulties with these models 
is how to determine the values of the direct estimator variances (or heteroscedastic variances of the 
model error terms). Although, as stated above, these variances are assumed to be known, in practice 
they are replaced by estimates. Given the small amount of data in some of the areas, the estimates of 
these variances are also very imprecise. There are smoothing methods such as the generalised variance 
function method (see Fay and Herriot, 1979) or non-parametric estimation of these variances, (see 
González-Manteiga et al. (2010)). The estimation of these variances adds the problem of incorporating 
the estimation error of these variances into the error of the final estimator.  

In individual-level models, as the name suggests, the model is established for each individual in 
the population (superpopulation model), and therefore the fit of these models requires individual data 
on the response variable and auxiliary variables. The first model of this type was advanced by Battesse, 
Harter and Fuller (1988) and is known as the nested error model. This is a linear regression.                        
model that, in addition to the individual model errors, includes random effects associated with the 
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areas, which illustrate the heterogeneity between the areas that is not explained by the available 
auxiliary variables. These models are currently widely used when the necessary data is available,                 
as they incorporate much more information than area-level models and the variances of the model 
errors do not need to be known.  

The adoption of a stochastic model that generates the values of the variable of interest in the 
individuals of the population makes the indicators of interest random quantities. Thus, in the literature, 
it is common to use the term "predict" rather than "estimate" the value of the indicator of interest and 
"predictor" rather than "estimator". In this paper, both terms will be used synonymously. In this context, 
an unbiased predictor of an indicator is one whose expectation under the model matches the 
expectation of that indicator. When estimating linear-type indicators in the values of the variable of 
interest in the individuals of the population, as means or totals, the basic models that are used at area 
or individual level are part of the mixed linear models that include random effects on the areas of 
interest. Under these models, the usual indirect estimator is the best linear unbiased predictor (BLUP), 
which consists of the linear combination of the observed values of the response variable in the 
individuals in the sample, which is unbiased under the model and minimises the mean squared error. 
The BLUP depends on the unknown parameters of the model, which represent the common behaviour 
between the areas. By replacing these unknown parameters with estimators, we obtain the empirical 
BLUP (EBLUP). This is eventually the usual model-based estimator (or predictor) of a linear indicator in 
a small area.  

The BLUP does not require any assumption of normality in the model. However, to estimate more 
general indicators than the linear ones, the best predictor is the one that minimises the mean squared 
error, without requiring it to be linear or unbiased. This is equal to the expectation under the model of 
the indicator to be estimated, conditional on the values observed in the sample. Under normality, the 
best predictor of a linear indicator is the BLUP. When there is no normality or when the indicator to be 
estimated is not linear, it may be that the expectation that defines the best predictor cannot be 
calculated analytically. In that case, numerical approximations of the best predictor are used. Other 
widely used models, for example when estimating proportions of binary variables, are generalised linear 
models with random effects (see Chapter V).  

Let us now consider a population that is divided into domains, and these domains are in turn 
divided into subdomains, and we wish to estimate at one or both levels. For example, Mexico is divided 
into 31 states plus Mexico City and each state, in turn, is divided into a number of municipalities. More 
appropriate models for this situation include random effects at various levels (see, for example, Stukel 
and Rao, 1999 for the estimation of linear indicators or Marhuenda et al., 2018, for the estimation of 
general indicators). On the other hand, when there are several interrelated variables of interest, 
multivariate models can be used (see Fay, 1987 or Datta, Fay and Ghosh, 1991). Also, when there is 
temporal and/or spatial correlation, one can resort to models that include random effects that follow a 
temporal series process and/or a spatial process (see, for example, Pfeffermann and Burk (1990) or Rao 
and Yu (1992) for temporal models, Molina, Salvati and Pratesi (2008) for a spatial model and 
Marhuenda, Molina and Morales (2013) for a spatio-temporal model). On the other hand, Bayesian 
models are an alternative to frequentist models that more often than not present computational 
advantages, providing estimates that are practically identical to those obtained with the corresponding 
frequentist model as long as the prior distributions considered are non-informative (see Chapter IV). The 
case study by Rao and Molina (2015) gives a detailed overview of the most widely used techniques in 
small area estimation and carries out a thorough review of most of the work done in this field up to the 
date of publication. 
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II. Common indicators of poverty and inequality 

In the literature there are countless indicators of poverty and inequality that summarise different 
aspects of the living conditions of a population. Indeed, based on official surveys of living conditions in 
various countries, the National Statistical Institutes usually produce a wide variety of indicators in order 
to illustrate the different measurements of poverty or inequality. The mathematical form of the 
particular indicator to be estimated is very important when it comes to selecting appropriate small-area 
estimation techniques, as not all techniques are applicable to all types of estimators.  

In this chapter we will review many of the indicators that appear in the literature, as well as the 
indicators that are usually produced from official surveys of living conditions. Although it is not possible 
to include all existing indicators, some of those described in this chapter will be used to illustrate the 
small-area estimation techniques most commonly used for our purposes. Thus, the following chapters 
will review the different methods that can be used, with an indication of the types of indicators to which 
they are applicable.  

Neri, Ballini and Betti (2005) review indicators of poverty and inequality. The most widely used 
poverty indicator is the poverty incidence or poverty rate, also called the at-risk-of-poverty rate, which 
is calculated as the proportion of individuals with (equivalised net) income below the poverty line. 
Another common indicator is the poverty gap, which measures the extent of poverty rather than the 
frequency of individuals at risk of poverty. Both these indicators are elements of a wider.                            
family of indicators defined by Foster, Greer and Thorbecke (1984), which we will call the FGT family of 
indicators, and which have the advantage of being additive in individuals. The small area estimation 
methods which we will describe in later chapters will be illustrated by applying them to some                            
of the indicators in this family, although it is important to note that some methods are applicable                 
to many other indicators not included in this family. In each chapter, it will be made clear                                        
to which indicators each method is applicable.  

Let 𝑈𝑈 denotes the target population (e.g., the residents of a country), of size 𝑁𝑁, which is divided 
into 𝐷𝐷 subpopulations, the areas, or domains to be estimated, of sizes 𝑁𝑁1, … ,𝑁𝑁𝐷𝐷. Note that the 
population sizes of the areas are usually very large because, as discussed in Chapter II, the term "small 
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area" refers to the sample size (more specifically to the sampling error of the direct estimator used) and 
not to the population size. 

𝐸𝐸𝑑𝑑𝑑𝑑  denotes the measure of purchasing power (e.g., income or expenditure) of the individual 𝑖𝑖 in 
the area 𝑑𝑑, 𝑑𝑑 = 1, … ,𝐷𝐷. 𝑧𝑧 denotes the poverty line used, below which an individual is considered to be 
at risk of poverty. The FGT indicator family for the area 𝑑𝑑 is defined by: 

 𝐹𝐹𝛼𝛼𝛼𝛼 =
1
𝑁𝑁𝑑𝑑

 ��
𝑧𝑧 − 𝐸𝐸𝑑𝑑𝑑𝑑

𝑧𝑧
�
𝛼𝛼

𝐼𝐼(𝐸𝐸𝑑𝑑𝑑𝑑 < 𝑧𝑧)
𝑁𝑁𝑑𝑑

𝑖𝑖=1

,  𝑑𝑑 = 1, … ,𝐷𝐷,𝛼𝛼 ≥ 0, (1) 

where 𝐼𝐼(𝐸𝐸𝑑𝑑𝑑𝑑 < 𝑧𝑧) is an indicator function, which assumes the value 1 if 𝐸𝐸𝑑𝑑𝑑𝑑 < 𝑧𝑧 (individual 𝑖𝑖 at risk of 
poverty) or the value 0 otherwise. Assuming 𝛼𝛼 = 0, we obtain the poverty rate or incidence. The poverty 
gap is the indicator obtained assuming 𝛼𝛼 = 1.  

A more complex indicator that uses both the poverty gap and poverty incidence, in addition to 
the Gini coefficient, is the Sen Index (Sen, 1976). On the other hand, within the indicators that do not 
depend on a poverty threshold but on the relative situation of individuals within the overall ranking, we 
can mention the Fuzzy monetary index and the Fuzzy supplementary index (see Betti et al. (2006)). 
Beyond the monetary dimension, it is often interesting to measure other types of constraints or 
deprivations that are not strictly monetary. These deprivations are usually measured as proportions of 
individuals who have (or do not have) access to certain services such as healthcare, housing, and 
education. On the other hand, indicators of inequality include the Gini Index, the generalised entropy 
index, or the Theil Index (see e.g., Neri, Ballini and Betti (2005)).  

At the European Council of December 2001, as part of the Lisbon Strategy of 2000 for the 
coordination of social policies of the member states, a set of indicators of poverty and social exclusion, 
known as the Laeken indicators, were established. These indicators include the at-risk-of-poverty rate 
𝐹𝐹0𝑑𝑑, the quintile share ratio (the ratio between the incomes of the richest 20% of the population and the 
poorest 20%), the relative median poverty risk gap and the Gini Index, among others.  

An example of multidimensional poverty measurement is the one used by the CONEVAL 
(National Council for the Evaluation of Social Development Policy) in Mexico, known as the 
multidimensional poverty indicator, which measures the proportion of individuals with at least one from 
among a set of established disadvantages or deprivations, and whose income is below the welfare 
threshold or line. The following chapters will review some small area estimation methods which, 
although illustrated by estimating indicators of the FGT family, can be used in the same way to estimate 
a large number of indicators. 
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III. Direct methods for the disaggregation  
of poverty data 

This chapter gives an overview of basic direct estimators for the mean of a variable in a domain or area, 
expressed as 

 𝑌̄𝑌𝑑𝑑 = 𝑁𝑁𝑑𝑑−1�𝑌𝑌𝑑𝑑𝑑𝑑

𝑁𝑁𝑑𝑑

𝑖𝑖=1

, (2) 

where 𝑌𝑌𝑑𝑑𝑑𝑑  denotes the value of the variable for the individual 𝑖𝑖 within the area (or domain) 𝑑𝑑. Note that 
the FGT indicators given in (1) can also be written in the form of mean values as in (2) calling  

𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑 = �
𝑧𝑧 − 𝐸𝐸𝑑𝑑𝑑𝑑

𝑧𝑧
�
𝛼𝛼

𝐼𝐼(𝐸𝐸𝑑𝑑𝑑𝑑 < 𝑧𝑧), 

whereby we obtain that 𝐹𝐹𝛼𝛼𝛼𝛼  is the mean of the values 𝑌𝑌𝑑𝑑𝑑𝑑 = 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑  for the individuals in the area 𝑑𝑑, or in 
other words,  

 𝐹𝐹𝛼𝛼𝛼𝛼 = 𝑁𝑁𝑑𝑑−1�𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑

𝑁𝑁𝑑𝑑

𝑖𝑖=1

. (3) 

As stated above, an estimator of an indicator in a given area qualifies as "direct" if it is calculated 
using only data from that area and without making use of data from any other area. These estimators 
are the default estimators used by National Statistical Institutes, due to their good sample design 
properties (such as unbiasedness) in areas with sufficient sample size. For example, direct estimators 
have traditionally been used to produce statistics on living conditions in Chile at national and regional 
levels and for a set of comunas with a representative sample, according to the Chilean National Socio-
economic Characterisation Survey (Encuesta de Caracterización Socioeconómica Nacional or CASEN). 
From CASEN 2015 onwards, the methodology for estimation in non-representative comunas is carried 
out using indirect model-based methods; specifically, the Fay-Herriot method described in the 
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introduction (see the paper on methodology for estimating poverty at the comuna level, with data from 
Casen 2015 from Chile’s 2017 Social Observatory of the Ministry of Social Development).  

In this paper, 𝑠𝑠 denotes the sample of size 𝑛𝑛 drawn from the population 𝑈𝑈, 𝑠𝑠𝑑𝑑  the subsample of 
the area 𝑑𝑑 of size 𝑛𝑛𝑑𝑑  (which may be equal to zero) and 𝑟𝑟𝑑𝑑  the set of out-of-sample elements from the 
same area, 𝑑𝑑 = 1, … ,𝐷𝐷, where ∑ 𝑛𝑛𝑑𝑑𝐷𝐷

𝑑𝑑=1 = 𝑛𝑛. Furthermore, 𝜋𝜋𝑑𝑑𝑑𝑑  denotes the probability of inclusion of 
the individual 𝑖𝑖 in the sample of the area 𝑑𝑑, 𝑤𝑤𝑑𝑑𝑑𝑑 = 𝜋𝜋𝑑𝑑𝑑𝑑−1 denotes the sampling weight of the same 
individual and 𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖 denotes the probability of inclusion of the individuals 𝑖𝑖 and 𝑗𝑗 in the sample of the 
area 𝑑𝑑. We will now give an overview of the best-known direct estimators.  

A. Basic direct estimators 

The unbiased estimator with respect to the sample design of the mean of the area 𝑑𝑑, 𝑌̄𝑌𝑑𝑑, is known as the 
Horvitz-Thompson (HT) estimator. This estimator needs to know the true size of the area 𝑁𝑁𝑑𝑑  and the 
sampling weights 𝑤𝑤𝑑𝑑𝑑𝑑 = 𝜋𝜋𝑑𝑑𝑑𝑑−1 for the sample individuals in the area 𝑑𝑑. Assuming that these are known, 
the HT estimator of 𝑌̄𝑌𝑑𝑑  is  

 𝑌̄𝑌�𝑑𝑑 = 𝑁𝑁𝑑𝑑−1 �𝑤𝑤𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

𝑌𝑌𝑑𝑑𝑑𝑑 . (4) 

Note that for the total area 𝑑𝑑, 𝑌𝑌𝑑𝑑 = ∑ 𝑌𝑌𝑑𝑑𝑑𝑑
𝑁𝑁𝑑𝑑
𝑖𝑖=1 , the HT estimator is simply 𝑌𝑌�𝑑𝑑 = ∑ 𝑤𝑤𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑 𝑌𝑌𝑑𝑑𝑑𝑑  and does not 

need to know the area’s population size 𝑁𝑁𝑑𝑑.  

If 𝜋𝜋𝑑𝑑𝑑𝑑 > 0 for every 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑, an unbiased estimator of the variance under the HT estimator 
design of 𝑌̄𝑌𝑑𝑑  is expressed as  

 var� 𝜋𝜋(𝑌̄𝑌�𝑑𝑑) = 𝑁𝑁𝑑𝑑−2 ��
𝑌𝑌𝑑𝑑𝑑𝑑2

𝜋𝜋𝑑𝑑𝑑𝑑2𝑖𝑖∈𝑠𝑠𝑑𝑑

(1 − 𝜋𝜋𝑑𝑑𝑑𝑑) + 2 � �
𝑌𝑌𝑑𝑑𝑑𝑑𝑌𝑌𝑑𝑑𝑑𝑑
𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑𝑗𝑗∈𝑠𝑠𝑑𝑑

𝑗𝑗>𝑖𝑖
𝑖𝑖∈𝑠𝑠𝑑𝑑

�
𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖 − 𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑

𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖
��. (5) 

It often happens that, at the estimation stage, not all information about the sample design is 
available apart from the sampling weights 𝑤𝑤𝑑𝑑𝑑𝑑. Since the second-order inclusion probabilities 𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖  are 
not available, the estimator (5) cannot be calculated. However, for sample designs with second-order 
inclusion probabilities verifying 𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖 ≈ 𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑, for 𝑗𝑗 ≠ 𝑖𝑖, as for example in Poisson sampling,                
where equality is given, the second term of (5) becomes approximately zero. Moreover,                                         
by replacing  𝑤𝑤𝑑𝑑𝑑𝑑 = 𝜋𝜋𝑑𝑑𝑑𝑑−1, we obtain the following variance estimator, which does not depend                           
on second-order inclusion probabilities  

 var� 𝜋𝜋(𝑌̄𝑌�𝑑𝑑) = 𝑁𝑁𝑑𝑑−2 �𝑤𝑤𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

(𝑤𝑤𝑑𝑑𝑑𝑑 − 1)𝑌𝑌𝑑𝑑𝑑𝑑2 . (6) 

This estimator is provided by the direct() function of the R sae package, which will be used in 
example 1 to illustrate these procedures, when the sampling weights are included. This function 
assumes that no information about the sample design is available other than the sampling weights. If 
we have information about the sample design, there are more suitable R packages such as survey 
(Lumley 2017) or sampling (Tillé and Matei 2016). In addition, there are alternative approximations of 
variance depending on the sample design and available information, e.g., the ultimate clusters method 
or the Balanced Repeated Replications (BRR) method with Fay's correction (U.S. Bureau of Labor 
Statistics and U.S. Census Bureau 2006). 

The HT estimator weights the individual observations 𝑌𝑌𝑑𝑑𝑖𝑖  by using the sampling weights or 
inverses of the sample inclusion probabilities, 𝑤𝑤𝑑𝑑𝑑𝑑 = 𝜋𝜋𝑑𝑑𝑑𝑑−1. This protects against situations where the 
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probability of selecting an individual is related to the value of the variable of interest (informative 
sample design). Indeed, if certain types of individuals (e.g., those with lower incomes) have a higher 
probability of appearing in the sample, it is likely that these types of individuals will appear more 
frequently in the final sample, while the types of individuals less likely to appear (e.g., those with higher 
incomes) are likely to be scarce in the sample. This means that, if we were to estimate by giving the 
same weight to all the observations in the sample, as in the basic sample mean, we would have a bias 
(e.g., average income would be underestimated). For this reason, less weight must be given to those 
observations which are more likely to appear in the sample, and more weight to those which are less 
likely to appear.  

Although this estimator is exactly unbiased with respect to the sample design, its variance under 
the design can be very large when the sample size of the area 𝑛𝑛𝑑𝑑  is small. A slightly biased estimator for 
small 𝑛𝑛𝑑𝑑  but with a somewhat smaller variance, and which does not need to know the size of the area 
𝑁𝑁𝑑𝑑  in order to estimate the mean 𝑌̄𝑌𝑑𝑑, is the Hájek estimator. This estimator is equal to the weighted 
mean in the observations in the area, using the sampling weights as weightings, i.e,  

𝑌̄𝑌�𝑑𝑑𝐻𝐻𝐻𝐻 = 𝑁𝑁�𝑑𝑑−1 �𝑤𝑤𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

𝑌𝑌𝑑𝑑𝑑𝑑 , donde 𝑁𝑁�𝑑𝑑 = �𝑤𝑤𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

. 

For the total 𝑌𝑌𝑑𝑑 = ∑ 𝑌𝑌𝑑𝑑𝑑𝑑
𝑁𝑁𝑑𝑑
𝑖𝑖=1 , the Hájek estimator is 𝑌𝑌�𝑑𝑑𝐻𝐻𝐻𝐻 = 𝑁𝑁𝑑𝑑𝑌̄𝑌�𝑑𝑑𝐻𝐻𝐻𝐻, which does need to know the 

population size 𝑁𝑁𝑑𝑑.  

Under the sample design, an estimator of the variance of the Hájek estimator, 𝑌̄𝑌�𝑑𝑑𝐻𝐻𝐻𝐻, is obtained 
using the Taylor linearisation method. The resulting estimator is obtained by simply replacing 𝑌𝑌𝑑𝑑𝑑𝑑  by 
𝑒̃𝑒𝑑𝑑𝑑𝑑 = 𝑌𝑌𝑑𝑑𝑑𝑑 − 𝑌̄𝑌�𝑑𝑑𝐻𝐻𝐻𝐻 in the variance estimator of the HT estimator of the total 𝑌𝑌�𝑑𝑑  and dividing by 𝑁𝑁�𝑑𝑑; i.e.  

var� 𝜋𝜋(𝑌̄𝑌�𝑑𝑑) = 𝑁𝑁�𝑑𝑑−2 ��
(𝑌𝑌𝑑𝑑𝑑𝑑 − 𝑌̄𝑌�𝑑𝑑𝐻𝐻𝐻𝐻)2

𝜋𝜋𝑑𝑑𝑑𝑑2𝑖𝑖∈𝑠𝑠𝑑𝑑

(1 − 𝜋𝜋𝑑𝑑𝑑𝑑) 

 + 2 � �
(𝑌𝑌𝑑𝑑𝑑𝑑 − 𝑌̄𝑌�𝑑𝑑𝐻𝐻𝐻𝐻)(𝑌𝑌𝑑𝑑𝑑𝑑 − 𝑌̄𝑌�𝑑𝑑𝐻𝐻𝐻𝐻)

𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑𝑗𝑗∈𝑠𝑠𝑑𝑑
𝑗𝑗>𝑖𝑖

𝑖𝑖∈𝑠𝑠𝑑𝑑

�
𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖 − 𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑

𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖
��, (7) 

assuming that 𝜋𝜋𝑑𝑑𝑑𝑑 > 0, for each 𝑖𝑖. For designs in which 𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖 ≈ 𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑, for 𝑗𝑗 ≠ 𝑖𝑖, as in Poisson sampling, 
this estimated variance is reduced to  

var� 𝜋𝜋(𝑌̄𝑌�𝑑𝑑) = 𝑁𝑁�𝑑𝑑−2 �𝑤𝑤𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

(𝑤𝑤𝑑𝑑𝑑𝑑 − 1)(𝑌𝑌𝑑𝑑𝑑𝑑 − 𝑌̄𝑌�𝑑𝑑𝐻𝐻𝐻𝐻)2. 

As stated above, the FGT indicators have the advantage that they can be written as a mean for 
the individuals in the area (see (3)). Therefore, the Horvitz-Thompson estimator of 𝐹𝐹𝛼𝛼𝛼𝛼  is then  

𝐹𝐹�𝛼𝛼𝛼𝛼 = 𝑁𝑁𝑑𝑑−1 �𝑤𝑤𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑 . 

Alternatively, the Hájek estimator of 𝐹𝐹𝛼𝛼𝛼𝛼  is expressed as  

𝐹𝐹�𝛼𝛼𝛼𝛼𝐻𝐻𝐻𝐻 = 𝑁𝑁�𝑑𝑑−1 �𝑤𝑤𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑 . 

  Note that, by aggregating the direct HT estimators of the totals 𝑌𝑌𝑑𝑑  for the areas of a larger region, say 
for the entire population, we obtain the HT estimator of the population total 𝑌𝑌� = ∑ ∑ 𝑤𝑤𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑

𝐷𝐷
𝑑𝑑=1 𝑌𝑌𝑑𝑑𝑑𝑑, i.e.  
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�𝑌𝑌�𝑑𝑑

𝐷𝐷

𝑑𝑑=1

= 𝑌𝑌� . 

Given that the HT estimator is efficient at a higher level of aggregation such as the population 
level, this property, known as the benchmarking property, is recommended for estimators in the areas. 
However, other estimators, especially the indirect estimators that we will see in the following chapters, 
will not add up exactly to the direct estimator considered for the population total (which may be 
different from that of HT). Adjustments can be made to the estimators to force this to happen. Let 𝑌𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸  
be an estimator that does not verify this property. If we want these to aggregate the HT estimator at 
the national level 𝑌𝑌� , a common adjustment is of the ratio type, expressed as  

𝑌𝑌�𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑌𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸  
𝑌𝑌�

∑ 𝑌𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷
𝑑𝑑=1

,  𝑑𝑑 = 1, … ,𝐷𝐷. 

There is a large body of literature on other types of adjustments, such as difference adjustments, 
and on methods specifically designed to compel computed estimators to check this property even at 
various levels, but they are not included in this paper for purposes of conciseness. For more information, 
see e.g., Ghosh and Steorts (2013) and the references quoted therein. 

Below, we summarise the types of indicators to which these estimators are applicable, the data 
that is necessary to produce them as well as the data of the variable of interest obtained from a survey, 
and the advantages and disadvantages from an eminently practical point of view.   

Objective indicators: additive parameters, in that they are sums of certain variables for each individual 
in the area. These variables can be functions of the variables of interest for the individuals (e.g., 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑  is 
a function of the variable used to measure the purchasing power of the individual, 𝐸𝐸𝑑𝑑𝑑𝑑).   

Data requirements:  

• Sampling weights 𝑤𝑤𝑑𝑑𝑑𝑑  for sample individuals in the area 𝑑𝑑.  

• For the HT estimator of the mean and for the Hájek estimator of the total, area 
population size, 𝑁𝑁𝑑𝑑.  

Advantages:  

• The HT estimator is exactly unbiased and the Hájek estimator is approximately unbiased 
with respect to the sample design. Both are consistent with respect to the design when 
the sample size of the area 𝑛𝑛𝑑𝑑  increases. Therefore, they perform well for areas with 
sufficient sample size under sample designs with unequal probabilities, including under 
information sampling, as long as they are calculated using the true probabilities of 
inclusion of individuals in the area sample.  

• They do not need to assume any models or hypotheses about the variables in question 
𝑌𝑌𝑑𝑑𝑑𝑑  which means they are completely non-parametric.  

• They satisfy the benchmarking property: if we add up the estimated totals for all the 
areas in a larger region, we get the estimated total for that region which is obtained by 
the same method.  

Disadvantages:  

• They are very inefficient (i.e., they have a high sampling error) for small areas due to the 
small sample size.  
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• They cannot be calculated for unsampled areas or domains, i.e., with sample size 𝑛𝑛𝑑𝑑  
equal to zero.  

Example 4.1. Direct HT estimators of poverty incidence, with R. We will demonstrate how to 
calculate direct HT estimators for poverty incidence, using simulated data for living conditions in 
Spanish provinces, included in the R data file known as incomedata from the R sae package. This dataset 
includes, for 𝑛𝑛 = 17119 fictitious individuals living in the 𝐷𝐷 = 52 Spanish provinces, the name of the 
province where they live (provlab), the province code (prov), the autonomous community code (ac), the 
age group from 1 to 5 (age), the nationality (nat, 1=if Spanish, 2=if not), the educational level (educ, from 
0=under 16 to 2=third level), employment status (labor, where 0=under 16, 1=employed, 2=unemployed 
and 3=inactive), whether they are in each age group, from group 2 to 5 (age2 to age5), whether they 
have educational level 1 to 3 (educ1 to educ3), whether they have Spanish nationality, whether they are 
employed, unemployed or inactive, their equivalised net income (income) and the sampling weight 
(weight). We calculate direct HT estimators for the poverty incidence in the 𝐷𝐷 = 52 Spanish provinces.  

 After installing the sae library, we load it, along with the incomedata dataset, which contains the 
sample data, and the sizeprov dataset, which contains the population sizes for the provinces, Nd:  

library(sae) 
data(incomedata) 
attach(incomedata) 
data(sizeprov) 

Next, we use the direct() function to obtain the direct HT estimators. First of all, we calculate the 
total sample size, the number of provinces and their sample sizes and extract the population sizes from 
the sizeprov file:  

n<-dim(incomedata)[1]   # Total sample size 
D<-length(unique(prov))           # Number of provinces (areas or domains)                                                                                       
nd<-as.vector(table(prov))        # Sample sizes of provinces                                                                                                              
Nd<-sizeprov$Nd                   # Population sizes of the provinces 

We set the poverty line, which is calculated as 0.6*median (income) with the previous year's data, 
and construct the poor variable, which is the indicator of having income below the poverty line:  

z<-6557.143                                                                                                                                                                                              
poor<-numeric(n)                                                                                                                                                                                    
poor[income<z]<-1 

Finally, we calculate the direct HT estimators of the poverty incidence in the provinces (averages 
of the poor variable in the provinces), using the direct() function including the sampling weights given 
by the weight variable:  

povinc.dir.res<-direct(y=poor,dom=prov,sweight=weight,domsize=sizeprov[,-1]) 
print(povinc.dir.res,row.names=F) 
 
The output of this function is:  
 
Domain SampSize     Direct         SD       CV 

      1       96 0.25503732 0.04846645 19.003670 

      2      173 0.14059242 0.03042195 21.638397 

      3      539 0.20785096 0.02178689 10.481979 

      4      198 0.26763976 0.04090335 15.282986 

      5       58 0.05512200 0.02555426 46.359465 
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      6      494 0.21553890 0.02357906 10.939585 

      7      634 0.09999792 0.01536517 15.365488 

      8     1420 0.29812535 0.01618508  5.428952 

      9      168 0.21413150 0.04473542 20.891562 

     10      282 0.27031324 0.03125819 11.563692 

     11      398 0.14887351 0.02189022 14.703904 

     12      118 0.17598199 0.03584882 20.370731 

     13      250 0.20921534 0.03279230 15.673948 

     14      224 0.29975708 0.03934080 13.124228 

     15      495 0.25347550 0.02467716  9.735520 

     16       92 0.26334059 0.05913385 22.455274 

     17      142 0.18337421 0.03710194 20.232911 

     18      208 0.31727340 0.04043964 12.745990 

     19       89 0.17908182 0.04234025 23.642966 

     20      285 0.23690549 0.03194779 13.485457 

     21      122 0.12583449 0.03202547 25.450474 

     22      115 0.24107606 0.04856351 20.144476 

     23      232 0.31294198 0.04122671 13.173916 

     24      218 0.18801572 0.03002634 15.970122 

     25      130 0.15559590 0.03872448 24.887854 

     26      510 0.25811811 0.02459196  9.527405 

     27      173 0.37718722 0.05696330 15.102129 

     28      944 0.18218209 0.01639018  8.996593 

     29      379 0.22918462 0.02735631 11.936364 

     30      885 0.17703167 0.01648910  9.314210 

     31      564 0.16190765 0.01842017 11.376958 

     32      129 0.22799612 0.04199465 18.419018 

     33      803 0.26064010 0.02093779  8.033220 

     34       72 0.30166074 0.07179782 23.800849 

     35      472 0.16651843 0.02307258 13.855869 

     36      448 0.18549072 0.02418887 13.040474 

     37      164 0.16104513 0.02998243 18.617410 

     38      381 0.18429619 0.02054550 11.148085 

     39      434 0.34244429 0.03248937  9.487491 

     40       58 0.22262002 0.05639965 25.334492 

     41      482 0.20503036 0.02122527 10.352256 

     42       20 0.02541207 0.02540651 99.978151 

     43      134 0.32035438 0.04934077 15.401934 

     44       72 0.27364239 0.06723440 24.570172 

     45      275 0.12553377 0.02131991 16.983409 

     46      714 0.21360678 0.02070508  9.693081 

     47      299 0.19292332 0.03211484 16.646429 

     48      524 0.21694466 0.02215645 10.212948 
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     49      104 0.30027442 0.06025302 20.065986 

     50      564 0.10034577 0.01569138 15.637311 

     51      235 0.19724796 0.03341193 16.939048 

     52      180 0.19109119 0.03441016 18.007191 

Finally, we store the estimated values in a vector and count how many provinces have a CV                
above 20%:   
 
povinc.dir<-povinc.dir.res$Direct 
povinc.dir.cv<-povinc.dir.res$CV 
sum(povinc.dir.cv>20) 
 

There are 15 provinces whose direct HT estimators of poverty incidence                                                               
have a CV greater than 20%. Those 15 provinces would be small areas for this indicator. But, as we will 
see, more efficient estimators can also be found in other provinces.  

B. GREG and calibration estimators 

A more sophisticated estimator than the basic direct estimators described in the previous chapter, 
in that it uses auxiliary information, is the generalised regression estimator (GREG). This estimator 
requires knowing the total 𝑿𝑿𝑑𝑑 = ∑ 𝒙𝒙𝑑𝑑𝑑𝑑

𝑁𝑁𝑑𝑑
𝑖𝑖=1 , or the mean 𝑿̄𝑿𝑑𝑑 = 𝑁𝑁𝑑𝑑−1 ∑ 𝒙𝒙𝑑𝑑𝑑𝑑

𝑁𝑁𝑑𝑑
𝑖𝑖=1 , for the area 𝑑𝑑 of a vector 

𝒙𝒙𝑑𝑑𝑑𝑑  of values of 𝑝𝑝 auxiliary variables related to 𝑌𝑌𝑑𝑑𝑑𝑑, for the individual 𝑖𝑖 within the area 𝑑𝑑. If                                
𝑿̄𝑿�𝑑𝑑 = 𝑁𝑁𝑑𝑑−1 ∑ 𝑤𝑤𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑 𝒙𝒙𝑑𝑑𝑑𝑑  is the HT estimator of 𝑿̄𝑿𝑑𝑑, the GREG estimator of 𝑌̄𝑌𝑑𝑑  is expressed as  

 𝑌̄𝑌�𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑌̄𝑌�𝑑𝑑 + �𝑿̄𝑿𝑑𝑑 − 𝑿̄𝑿�𝑑𝑑�
′
𝑩𝑩�𝑑𝑑 . (8) 

Here, 𝑩𝑩�𝑑𝑑 = �∑ 𝑤𝑤𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑 𝒙𝒙𝑑𝑑𝑑𝑑𝒙𝒙𝑑𝑑𝑑𝑑′/𝑐𝑐𝑑𝑑𝑑𝑑�
−1 ∑ 𝑤𝑤𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑 𝒙𝒙𝑑𝑑𝑑𝑑𝑌𝑌𝑑𝑑𝑑𝑑/𝑐𝑐𝑑𝑑𝑑𝑑  is the weighted least squares 

estimator (using the sample design weights) of the vector of coefficients of the following linear 
regression assumed for the units of the area 𝑑𝑑,  

 𝑌𝑌𝑑𝑑𝑑𝑑 = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷𝑑𝑑 + 𝜖𝜖𝑑𝑑𝑑𝑑 ,  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 , (9) 

where the model errors 𝜖𝜖𝑑𝑑𝑑𝑑  are independent, with zero expectation and variance 𝜎𝜎2𝑐𝑐𝑑𝑑𝑑𝑑, being 𝑐𝑐𝑑𝑑𝑑𝑑 > 0 
constants representing the possible heteroscedasticity, 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑. The constants 𝑐𝑐𝑑𝑑𝑑𝑑  are determined 
by studying the residuals of the linear model without heteroscedasticity, i.e., with 𝑐𝑐𝑑𝑑𝑑𝑑 = 1, 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑. 
For example, by looking at the scatter plot of the residuals against each of the auxiliary variables, we 
can observe graphically whether the variance of the residuals increases with any of them. In this case, 
we would take as constants 𝑐𝑐𝑑𝑑𝑑𝑑, the values of this variable in the units of the area or, more generally, a 
function 𝑐𝑐𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥𝑑𝑑𝑑𝑑) > 0, of the values of this auxiliary variable.  

The GREG estimator of the mean of the area 𝑑𝑑, 𝑌̄𝑌𝑑𝑑, is approximately unbiased under the sample 
design regardless of whether model (9) is correct or not, since the bias of the estimator of the regression 
coefficient vector 𝑩𝑩�𝑑𝑑, as an estimator of its population version, 𝑩𝑩𝑑𝑑 = (∑ 𝒙𝒙𝑑𝑑𝑑𝑑

𝑁𝑁𝑑𝑑
𝑖𝑖=1 𝒙𝒙𝑑𝑑𝑑𝑑′/

𝑐𝑐𝑑𝑑𝑑𝑑)−1 ∑ 𝒙𝒙𝑑𝑑𝑑𝑑
𝑁𝑁𝑑𝑑
𝑖𝑖=1 𝑌𝑌𝑑𝑑𝑑𝑑/𝑐𝑐𝑑𝑑𝑑𝑑, is small. Thus, model (9) is often called a working model and estimators that are 

unbiased regardless of whether the model is verified, like (8), are called model-assisted. On the other 
hand, the GREG is also unbiased under the regression model (9), conditionally on the sample 𝑠𝑠. 
Although the GREG estimator tends to improve the efficiency of the direct estimator 𝑌̄𝑌�𝑑𝑑  if the           
auxiliary variables are linearly related to the dependent variable 𝑌𝑌𝑑𝑑𝑑𝑑, this estimator only uses data          
from the area 𝑑𝑑 and, therefore, its variance may still be large for areas with a small sample size 𝑛𝑛𝑑𝑑.  



ECLAC – Statistics Series No. 97 Disaggregating data in household surveys… 28 

 

Note that, if we wish to use the GREG estimator for the FGT indicator of order 𝛼𝛼,                                 
which is equal to the mean of the variables 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑  in the area, i.e. 𝐹𝐹𝛼𝛼𝛼𝛼 = 𝑁𝑁𝑑𝑑−1 ∑ 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑

𝑁𝑁𝑑𝑑
𝑖𝑖=1 , the         

improvement in efficiency with respect to the direct estimator would depend on the                              
goodness of fit of the following regression model:  

𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑 = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷𝑑𝑑 + 𝜖𝜖𝑑𝑑𝑑𝑑 ,  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 . 

However, in the case of FGT indicators, the variables 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑  are a complex function of the variable 
of interest (the measurement of purchasing power 𝐸𝐸𝑑𝑑𝑑𝑑) expressed as 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑 = {(𝑧𝑧 − 𝐸𝐸𝑑𝑑𝑑𝑑)/𝑧𝑧}𝛼𝛼𝐼𝐼(𝐸𝐸𝑑𝑑𝑑𝑑 < 𝑧𝑧), 
𝛼𝛼 ≥ 0. It is not easy to find auxiliary variables 𝒙𝒙𝑑𝑑𝑑𝑑  that are linearly related to 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑. Therefore, this model 
is difficult to verify in practice and, thus, for FGT indicators, GREG estimators are of less use than for 
estimating the means or totals of the variables of interest (e.g., income 𝐸𝐸𝑑𝑑𝑑𝑑).  

Calibration estimators are widely used in National Statistical Institutes to estimate means or 
totals at national level and in regions with sufficient sample size. If we calibrate at the area level, we will 
see that the resulting estimator is closely related to the GREG estimator. The calibration method was 
proposed by Deville and Särndal (1992) for estimating the total of a variable of interest using auxiliary 
information from 𝑝𝑝 related variables. Assuming that we know the totals of the auxiliary variables in the 
area, 𝑿𝑿𝑑𝑑, and also assuming that the auxiliary variables 𝒙𝒙𝑑𝑑𝑑𝑑  are linearly related to 𝑌𝑌𝑑𝑑𝑑𝑑, the calibration 
method consists of finding new weights ℎ𝑑𝑑𝑑𝑑, as close as possible to the original sampling weights 𝑤𝑤𝑑𝑑𝑑𝑑  in 
accordance with a distance 𝐺𝐺𝑑𝑑𝑑𝑑(ℎ𝑑𝑑𝑑𝑑 ,𝑤𝑤𝑑𝑑𝑑𝑑), such that the total 𝑿𝑿𝑑𝑑  of the auxiliary variables is estimated 
exactly with these weights; i.e. without error. If the variable of interest is linearly related to these 
auxiliary variables and the totals of these auxiliary variables are estimated exactly, it is expected that 
the totals of the variable of interest will also be estimated with little error. In formal terms, when 
estimating the mean 𝑌̄𝑌𝑑𝑑, we look for new weights for the sample units, ℎ𝑑𝑑𝑑𝑑, 𝑖𝑖 ∈ 𝑠𝑠𝑑𝑑, which are the solution 
to the problem  

min
{ℎ𝑑𝑑𝑑𝑑;𝑖𝑖∈𝑠𝑠𝑑𝑑}

�𝐺𝐺𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

(ℎ𝑑𝑑𝑑𝑑 ,𝑤𝑤𝑑𝑑𝑑𝑑)

sujeto a �ℎ𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

𝒙𝒙𝑑𝑑𝑑𝑑 = 𝑿𝑿𝑑𝑑 ,
 

where 𝐺𝐺𝑑𝑑𝑑𝑑(⋅,⋅) is a pseudo-distance. Using the pseudo chi-squared distance expressed as 𝐺𝐺𝑑𝑑𝑑𝑑(ℎ𝑑𝑑𝑑𝑑 ,𝑤𝑤𝑑𝑑𝑑𝑑) =
𝑐𝑐𝑑𝑑𝑑𝑑(ℎ𝑑𝑑𝑑𝑑 − 𝑤𝑤𝑑𝑑𝑑𝑑)2/𝑤𝑤𝑑𝑑𝑑𝑑, which is probably the most popular, and solving the problem by use of the 
Lagrange multiplier method, the resulting weights are  

 ℎ𝑑𝑑𝑑𝑑 = 𝑤𝑤𝑑𝑑𝑑𝑑 �1 + 𝒙𝒙𝑑𝑑𝑑𝑑′ ��𝑤𝑤𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

𝒙𝒙𝑑𝑑𝑑𝑑𝒙𝒙𝑑𝑑𝑑𝑑′/𝑐𝑐𝑑𝑑𝑑𝑑�

−1

�𝑿𝑿𝑑𝑑 − �𝑤𝑤𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

𝒙𝒙𝑑𝑑𝑑𝑑/𝑐𝑐𝑑𝑑𝑑𝑑�� , 𝑖𝑖 ∈ 𝑠𝑠𝑑𝑑 . (10) 

Note that the calibrated weights ℎ𝑑𝑑𝑑𝑑  are the result of making an adjustment to the original 
weights, ℎ𝑑𝑑𝑑𝑑 = 𝑤𝑤𝑑𝑑𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑, where the adjustment factor 𝑔𝑔𝑑𝑑𝑑𝑑  is expressed as the term within                                      
the brackets in (10). The calibration estimator of 𝑌̄𝑌𝑑𝑑  is then obtained simply the same as with the HT 
estimator, but using the calibrated weights instead of the original ones, as follows:  

𝑌̄𝑌�𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑑𝑑−1 � ℎ𝑑𝑑𝑖𝑖
𝑖𝑖∈𝑠𝑠𝑑𝑑

𝑌𝑌𝑑𝑑𝑑𝑑 . 

It is easy to demonstrate that, by substituting the formula obtained for these weights                       
given in (10) in the calibration estimator 𝑌̄𝑌�𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶, we obtain exactly the GREG estimator of 𝑌̄𝑌𝑑𝑑  given in (8). 
Deville and Särndal (1992) propose calibration estimators based on 𝐺𝐺𝑑𝑑𝑑𝑑(⋅,⋅) distances rather than the                      
chi-squared distance. However, they also show that the resulting estimators, under certain regularity 



ECLAC – Statistics Series No. 97 Disaggregating data in household surveys… 29 

 

conditions for the distance 𝐺𝐺𝑑𝑑𝑑𝑑(⋅,⋅), are asymptotically equivalent to the GREG and thus share the same 
asymptotic variance. As with the GREG estimator, for a small sample size 𝑛𝑛𝑑𝑑, the variance of the 
calibration estimators can be large.  

A consistent estimator (when 𝑛𝑛𝑑𝑑  increases) for the variance of the estimator 𝑌̄𝑌�𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  is obtained 
using the Taylor linearisation method. The resulting estimator is derived from replacing 𝑌𝑌𝑑𝑑𝑑𝑑  by 𝑒̃𝑒𝑑𝑑𝑑𝑑 =
𝑌𝑌𝑑𝑑𝑑𝑑 − 𝒙𝒙𝑑𝑑𝑑𝑑′𝑩𝑩�𝑑𝑑 in the estimated variance of the HT estimator given in (5), i.e.  

var� 𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) = 𝑁𝑁𝑑𝑑−2 ��
𝑒̃𝑒𝑑𝑑𝑑𝑑2

𝜋𝜋𝑑𝑑𝑑𝑑2𝑖𝑖∈𝑠𝑠𝑑𝑑

(1 − 𝜋𝜋𝑑𝑑𝑑𝑑) + 2 � �
𝑒̃𝑒𝑑𝑑𝑑𝑑𝑒̃𝑒𝑑𝑑𝑑𝑑
𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑𝑗𝑗∈𝑠𝑠𝑑𝑑

𝑗𝑗>𝑖𝑖
𝑖𝑖∈𝑠𝑠𝑑𝑑

�
𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖 − 𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑

𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖
��. 

For designs in which 𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖 ≈ 𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑  is verified, for 𝑗𝑗 ≠ 𝑖𝑖, as in Poisson sampling, this estimated 
variance, written as a function of 𝑤𝑤𝑑𝑑𝑑𝑑 = 𝜋𝜋𝑑𝑑𝑑𝑑−1, reduces to  

var� 𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) = 𝑁𝑁𝑑𝑑−2 �𝑤𝑤𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

(𝑤𝑤𝑑𝑑𝑑𝑑 − 1)𝑒̃𝑒𝑑𝑑𝑑𝑑2 . 

Simulation studies have shown that this estimator may underestimate the variance of the GREG. 
However, the estimator that results from replacing 𝑌𝑌𝑑𝑑𝑑𝑑  by 𝑔𝑔𝑑𝑑𝑖𝑖𝑒̃𝑒𝑑𝑑𝑑𝑑, where 𝑔𝑔𝑑𝑑𝑑𝑑  is the adjustment factor for 
the weights 𝑤𝑤𝑑𝑑𝑑𝑑, in the estimated variance of the HT estimator, expressed as  

var� 𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) = 𝑁𝑁𝑑𝑑−2 ��
𝑔𝑔𝑑𝑑𝑑𝑑2 𝑒̃𝑒𝑑𝑑𝑑𝑑2

𝜋𝜋𝑑𝑑𝑑𝑑2𝑖𝑖∈𝑠𝑠𝑑𝑑

(1 − 𝜋𝜋𝑑𝑑𝑑𝑑) + 2 � �
𝑔𝑔𝑑𝑑𝑑𝑑𝑒̃𝑒𝑑𝑑𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑𝑒̃𝑒𝑑𝑑𝑑𝑑

𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑𝑗𝑗∈𝑠𝑠𝑑𝑑
𝑗𝑗>𝑖𝑖

𝑖𝑖∈𝑠𝑠𝑑𝑑

�
𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖 − 𝜋𝜋𝑑𝑑𝑑𝑑𝜋𝜋𝑑𝑑𝑑𝑑

𝜋𝜋𝑑𝑑,𝑖𝑖𝑖𝑖
��. 

reduces this underestimation and remains consistent when 𝑛𝑛𝑑𝑑  increases (see Fuller (1975) or Estevao, 
Hidiroglou and Särndal (1995)). Moreover, such an alternative variance estimator is approximately 
unbiased for the variance of the GREG 𝑌̄𝑌�𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  under the model (9) conditionally on the sample 𝑠𝑠, for 
various sample designs.  

Again, note that these estimators work for estimating totals or means of the variables of interest, 
but do not work for other types of parameters. For example, for the FGT indicator of order 𝛼𝛼 in the area 
𝑑𝑑, 𝐹𝐹𝛼𝛼𝛼𝛼 = 𝑁𝑁𝑑𝑑−1 ∑ 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑

𝑁𝑁𝑑𝑑
𝑖𝑖=1 , the GREG or calibration estimators would be more efficient with respect to the 

direct estimator if the auxiliary variables 𝒙𝒙𝑑𝑑𝑑𝑑  were linearly related to 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑,which is unlikely in practice.  

The main features of these estimators are summarised below:   

Target indicators: means/totals of the variables of interest.   

Data requirements:  

• Sampling weights 𝑤𝑤𝑑𝑑𝑑𝑑  for sample individuals in the area 𝑑𝑑.  

• For the estimator of the mean, population size of the area, 𝑁𝑁𝑑𝑑.  

• Sample observations of the 𝑝𝑝 auxiliary variables related to the variable of interest, obtained 
from the same survey from which the data of the variable of interest is obtained.  

• Population totals 𝑿𝑿𝑑𝑑  or means 𝑿̄𝑿𝑑𝑑  of the 𝑝𝑝 auxiliary variables in the area.  

Advantages:  

• They are approximately unbiased (and consistent when 𝑛𝑛𝑑𝑑  increases) with respect to the 
sample design, regardless of whether the model is verified or not. Therefore, they perform 
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well for areas with sufficient sample size under sample designs with unequal probabilities, 
including information sampling.  

• They do not require the model under consideration to be verified for the variables of interest 
𝑌𝑌𝑑𝑑𝑑𝑑; i.e., they are non-parametric.  

Disadvantages:  

• Although they may improve the basic direct estimators if the regression model is verified, they 
may still be inefficient for small areas due to the small sample size.  

• They cannot be calculated for unsampled areas or domains, i.e., with sample size 𝑛𝑛𝑑𝑑                
equal to zero.  

Example 4.2.  GREG estimators of poverty incidence, with R. Continuing Example 4.1, we                           
now show how GREG estimators of poverty incidence in the provinces could be calculated                               
with the same data, now considering auxiliary variables; specifically constant 1, age group,            
educational level, and employment status.  

First of all, we load the files containing the missing data: the totals of individuals in each province 
for each age group, for each educational level and for each employment status:  

data(sizeprovage)                                                                                                                                                                                     
data(sizeprovedu)                                                                                                                                                                                      
data(sizeprovlab) 

We construct the matrix with the vectors of proportions of individuals in each category and 
province. These will form the vector of population means 𝑿̄𝑿𝑑𝑑:  

Nd<-sizeprov[,3] 
Ndage<-as.matrix(sizeprovage[,-c(1,2)]) 
Ndedu<-as.matrix(sizeprovedu[,-c(1,2)]) 
Ndlab<-as.matrix(sizeprovlab[,-c(1,2)]) 

Pdage<-Ndage/Nd 
Pdedu<-Ndedu/Nd 
Pdlab<-Ndlab/Nd 
 
X<-cbind(const=rep(1,D),Pdage[,3:5],Pdedu[,c(2,4)],Pdlab[,2]) 
 

We next create the design matrix for the linear regression, with the values of the auxiliary variables for 
the individuals in the sample:  
 
Xtot<-model.matrix(poor~age3+age4+age5+educ1+educ3+labor1) 
  

Finally, we calculate the GREG estimators for the poverty incidence (mean values of the poor 
variable) in each province:  
 
provl<-unique(prov)     # Index of each province 
p<-dim(Xtot)[2]                 # Number of auxiliary variables 
 
betad<-matrix(0,nr=D,nc=p)   # Matrix with regression coefficients 
                                    # for each province (in rows) 
Xd.est<-matrix(0,nr=D,nc=p)   # Matrix of direct estimators of the means 
                                    # of the auxiliary variables for each province 
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povinc.greg<-numeric(D)       # Vector of GREG estimators in the province 
povinc.greg.var<-numeric(D)   # Vector with estimated  variances 
                                    # under the design of the GREG estimators 
 
for (d in 1:D){ 
    Xd<-Xtot[prov==provl[d],]    # Values of auxiliary variables 
                                     # for the individuals in the province 
    wd<-weight[prov==provl[d]]  # Sampling weights for the individuals 
                                     # in the province 
    yd<-poor[prov==provl[d]]      # Values of the variable of interest 
                                     # for the individuals in the province 
 
    # We adjust the regression for the province, with the sampling weights 
    betad[d,]<-coef(summary(lm(yd~-1+Xd, weights=wd)))[,1] 
 
    # Direct estimators of the means of the auxiliary variables in the province 
    Xd.est[d,]<-colSums(diag(wd)%*%Xd)/Nd[d] 
 
    # GREG estimator of the poverty incidence for the province 
    povinc.greg[d]<-povinc.dir [d]+sum((X[d,]-Xd.est[d,])*betad[d,]) 
 
    # Estimated variance under the design of the Greg 
    # estimator of the poverty incidence 
    gd<-matrix(1/Nd[d]+ 
    +(X[d,]-Xd.est[d,])%*%solve(t(Xd)%*%diag(wd)%*%Xd)%*%t(Xd),nr=nd[d]) 
    ed<-yd-Xd%*%as.matrix(betad[d,],nr=p) 
    povinc.greg.var[d]<-sum(wd*(wd-1)*(gd*ed)^2) 
 } 
# CVs of the GREG estimators 
povinc.greg.cv<-100*sqrt(povinc.greg.var)/povinc.greg 
  

We plot the values of the GREG estimators against those of HT, as well as their variances (or 
squared sampling errors): 

 

M<-max(povinc.dir,povinc.greg) 
m<-min(povinc.dir,povinc.greg) 
plot(povinc.dir,povinc.greg,ylim=c(m,M),xlim=c(m,M),xlab="HT",ylab="GREG") 
abline(a=0,b=1) 
M<-max(povinc.dir.var,povinc.greg.var) 
m<-min(povinc.dir.var,povinc.greg.var) 
plot(povinc.dir.var, povinc.greg.var, ylim=c(m,M), xlim=c(m,M), xlab="Var(HT)", ylab="Var(GREG)") 
abline(a=0,b=1)  

We can see that the GREG estimators resemble the HT estimators, but their estimated variances 
are slightly smaller. This improved efficiency is achieved through the use of auxiliary information. 

 

 

 

 



ECLAC – Statistics Series No. 97 Disaggregating data in household surveys… 32 

 

Figure 2 
GREG estimators of the poverty incidence for the provinces versus HT estimators (left), and estimated  

variances of the GREG estimators versus HT estimators (right) 
(In proportions) 

 
Source: Prepared by the author. 
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IV. Basic indirect methods for the disaggregation 
of poverty data 

An indirect estimator for an indicator in a specific area is one that uses information from other areas by 
assuming some type of homogeneity between them. The use of a larger amount of information in the 
estimation process often leads to a decrease in the sampling error (or an increase in efficiency). Firstly, 
we will give an overview of synthetic estimators. A synthetic estimator is one that considers the areas 
to be homogeneous in that they have common parameters, without allowing any degree of 
heterogeneity between them. These estimators make strong assumptions that are unlikely in practice 
and therefore may have a large bias. Despite their potential bias, they are included in this paper for the 
purpose of demonstrating the intuitive idea underpinning small area estimation, which is to borrow 
information from other areas for the purpose of improving efficiency. 

A. Synthetic post-stratified estimator 

It must be emphasised once again that this estimator is rarely used in real small area estimation 
applications due to the fact that it is based on unrealistic assumptions; however, it is described in this 
paper as it provides a simple illustration of the main underlying idea of how to borrow information.  

It has a qualitative variable related to the variable 𝑌𝑌𝑑𝑑𝑑𝑑. This qualitative variable has 𝐽𝐽 possible 
categories, which divide the population 𝑈𝑈 into 𝐽𝐽 groups, 𝑈𝑈1, … ,𝑈𝑈𝐽𝐽 of sizes 𝑁𝑁1, … ,𝑁𝑁𝐽𝐽, called post-strata, 
which intersect with the areas. Therefore, the area 𝑈𝑈𝑑𝑑  of the population is equally divided into 𝐽𝐽             
post-strata pieces, 𝑈𝑈𝑑𝑑1, … ,𝑈𝑈𝑑𝑑

𝐽𝐽 of population sizes 𝑁𝑁𝑑𝑑1, … ,𝑁𝑁𝑑𝑑
𝐽𝐽 and with mean values 𝑌̄𝑌𝑑𝑑1, … , 𝑌̄𝑌𝑑𝑑

𝐽𝐽, where   
𝑌̄𝑌𝑑𝑑
𝑗𝑗 = ∑ 𝑌𝑌𝑑𝑑𝑑𝑑/𝑁𝑁𝑑𝑑

𝑗𝑗
𝑖𝑖∈𝑈𝑈𝑑𝑑

𝑗𝑗 , 𝑗𝑗 = 1, … , 𝐽𝐽 (see figure 3). For the sake of simplicity, we refer to the post-strata as 

strata in this figure and in the following. 
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Figure 3 
Population divided into 4 post-strata and area 𝒅𝒅 

 
Source: Prepared by the author. 

Given that the means are additive indicators, we can decompose them into aggregations for the 
𝐽𝐽 strata, as follows:  

 𝑌̄𝑌𝑑𝑑 =
1
𝑁𝑁𝑑𝑑

�𝑌𝑌𝑑𝑑𝑑𝑑

𝑁𝑁𝑑𝑑

𝑖𝑖=1

=
1
𝑁𝑁𝑑𝑑

�𝑁𝑁𝑑𝑑
𝑗𝑗

𝐽𝐽

𝑗𝑗=1

 𝑌̄𝑌𝑑𝑑
𝑗𝑗 . (11) 

It is assumed that individuals within each stratum behave homogeneously, regardless of the area 
to which they belong and, more specifically, it is assumed that  

 𝑌̄𝑌𝑑𝑑
𝑗𝑗 = 𝑌̄𝑌𝑗𝑗 ,  𝑗𝑗 = 1, … , 𝐽𝐽, (12) 

where 𝑌̄𝑌𝑗𝑗 = ∑ 𝑌𝑌𝑑𝑑𝑑𝑑𝑖𝑖∈𝑈𝑈𝑗𝑗 /𝑁𝑁𝑗𝑗  is the mean of the stratum 𝑗𝑗. We can, then, take advantage of this 
homogeneity within strata to estimate the mean of each area by estimating the means of the strata 
(which must have large sample sizes). In other words, by substituting (12) in (11), we get  

 𝑌̄𝑌𝑑𝑑 =
1
𝑁𝑁𝑑𝑑

�𝑁𝑁𝑑𝑑
𝑗𝑗

𝐽𝐽

𝑗𝑗=1

 𝑌̄𝑌𝑗𝑗 . (13) 

The synthetic post-stratified estimator (PS-SYN) of 𝑌̄𝑌𝑑𝑑  is obtained by estimating the means of 
each stratum in (13) by means of the Hájek's estimators:  

𝑌̄𝑌�𝑑𝑑𝑃𝑃𝑃𝑃−𝑆𝑆𝑆𝑆𝑆𝑆 =
1
𝑁𝑁𝑑𝑑

�𝑁𝑁𝑑𝑑
𝑗𝑗

𝐽𝐽

𝑗𝑗=1

 𝑌̄𝑌�𝑗𝑗,𝐻𝐻𝐻𝐻. 

 The number of strata 𝐽𝐽 is considered to be small, and to have a sufficient sample. Therefore, the 
direct estimators 𝑌̄𝑌�𝑗𝑗,𝐻𝐻𝐻𝐻 of the means in the strata 𝑌̄𝑌𝑗𝑗  have a small variance. This means that, when 
estimating the mean for the area 𝑑𝑑 through the estimators for the strata, 𝑌̄𝑌�𝑗𝑗,𝐻𝐻𝐻𝐻, the variance                               
is also small.  

 
The homogeneity within each stratum is thus exploited to improve the efficiency of the estimator 

for the area 𝑑𝑑 by using all the sample data. However, the assumption of homogeneity                                   
within each of the strata (12) is unrealistic and therefore the synthetic post-stratified                               
estimator can have a considerable bias.  

Stratum 
1 

Stratum 
2 

Stratum 
3 

Stratum 
4 
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Since the bias of these estimators, rather than their variance, is not negligible and this can give a 
wrong picture of the quality of the estimator, it is worthwhile to obtain their mean squared error (MSE), 
which reflects both. For general synthetic estimators, an estimator of the MSE under the design is 
expressed as  

MSE�𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆) = (𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷)2 − var� 𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷), 

(see Rao and Molina (2015), p.44, eq. (03/02/2016)). This estimator is very unstable as it depends on the 
direct estimator of the corresponding area. More stable MSE estimators have been proposed and they 
are based on the idea of averaging for all areas, but the resulting estimators are not area-specific; i.e., 
the same MSE value would be given for all areas. There are no known MSE estimators for synthetic 
estimators that are both stable and area-specific. This is a disadvantage of these estimators.  

If we wish to use the PS-SYN estimator for an FGT indicator, it would in principle be possible, 
thanks to the additivity of these indicators. However, the estimator would be based on the (unrealistic) 
assumption that the FGT indicator remains constant within the strata, i.e.  

𝐹𝐹𝛼𝛼𝛼𝛼
𝑗𝑗 = 𝐹𝐹𝛼𝛼

𝑗𝑗 ,  𝑗𝑗 = 1, … , 𝐽𝐽, 

if 𝐹𝐹𝛼𝛼
𝑗𝑗  is the FGT indicator in the stratum 𝑗𝑗. Therefore, this estimator would be more useful for estimating 

means or totals of a continuous variable. 

These estimators can be summarised as follows:   

Target indicators: means/totals of the variable of interest   

Data requirements:  

• Sampling weights 𝑤𝑤𝑑𝑑𝑑𝑑  for all individuals in the sample.  

• Area population size, 𝑁𝑁𝑑𝑑, and population sizes of the stratum-area intersection,                                
𝑁𝑁𝑑𝑑
𝑗𝑗, 𝑗𝑗 = 1, … , 𝐽𝐽.  

• A qualitative variable (or a combination of several) observed in the same survey as, and related 
to, the variable of interest.  

Advantages:  

• If the strata have enough observations in the sample, the variance can be considerably 
decreased compared to a direct estimator.  

Disadvantages:  

• In practice, the homogeneity hypothesis considered for the variables 𝑌𝑌𝑑𝑑𝑑𝑑  is unrealistic. If this 
is not verified, the resulting estimators may have considerable bias, and therefore may not 
reflect the facts. Besides, when sampling errors are estimated they will result in small values. 
However, it is rarely possible to estimate the bias adequately. Therefore, in the absence of 
accurate estimates of the bias, the estimators may appear to be of good quality, but this is 
very unlikely to be the case.  

• It is not easy to find stable MSE estimators under the design.  

Example 3.  Synthetic post-stratified estimators of poverty incidence with R. Continuing 
Example 2, we can now demonstrate how to compute synthetic post-stratified estimators of poverty 
incidence for the provinces using educational levels (educ variable) as post-strata.  

In Example 2 we had loaded the population sizes of the provinces for each educational level 
(sizeprovedu dataset). These sizes must be in a data frame object, where the column names must match 
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the codes used for the categories of the post-stratum variable (educ). We therefore add the column 
names to the data frame with the population sizes. Next, we call on the pssynt() function, which 
calculates the post-stratified estimators for the poverty incidence (mean values of the poor variable) 
using the educ variable and we store the estimated values: 

colnames(sizeprovedu) <- c("provlab","prov","0","1","2","3") 
povinc.psedu.res<-pssynt(y=poor,sweight=weight,ps=educ,domsizebyps=sizeprovedu[,-1]) 
povinc.psedu<-povinc.psedu.res$PsSynthetic 
  

Figure 4 
HT, GREG and PS-SYN estimates of poverty incidence for each province 

(In proportions) 

 
Source: Prepared by the author. 

 
Finally, we graphically compare the results with those obtained using the direct HT and GREG 

estimators for each province:  
o<-order(nd) 
M<-max(povinc.psedu,povinc.dir,povinc.greg) 
m<-min(povinc.psedu,povinc.dir,povinc.greg) 
k<-6 
plot(1:D,povinc.dir[o],type="n",ylim=c(m,M+(M-m)/k), 

 xlab="Province",ylab="Estimator",xaxt="n") 
points(1:D,povinc.dir[o],type="b",col=1,lty=1,pch=1,lwd=2) 
points(1:D,povinc.greg[o],type="b",col=3,lty=3,pch=3,lwd=2) 
points(1:D,povinc.psedu[o],type="b",col=2,lty=2,pch=2,lwd=2) 
 axis(1, at=1:D, labels=nd[o]) 
legend(1,M+(M-m)/k,legend=c("HT","GREG","PS-SYN"),ncol=3, 

col=c(1,3,2),lwd=rep(2,3), lty=c(1,3,2),pch=c(1,3,2)) 
 

The results are shown in figure 4. We can see that the synthetic post-stratified estimators are too 
similar for all of the provinces, since they assume homogeneity for all individuals with the same 
educational level, regardless of the province to which they belong. This hypothesis is very unlikely. 
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B. Synthetic area-level regression estimator 

Synthetic regression estimators assume a linear regression model that can be placed either at the area 
level or at the individual level, depending on the auxiliary information available. We begin by considering 
that auxiliary information is only available at the area level. 𝒙𝒙𝑑𝑑  denotes the available vector of 𝑝𝑝 auxiliary 
variables at the area level (e.g., the vector of means 𝑿̄𝑿𝑑𝑑  of 𝑝𝑝 auxiliary variables). It is assumed that the 
indicator to be estimated 𝛿𝛿𝑑𝑑  (e.g., the area mean, 𝛿𝛿𝑑𝑑 = 𝑌̄𝑌𝑑𝑑) constantly varies with respect to this 
aggregate data 𝒙𝒙𝑑𝑑  for all areas, according to a linear regression model. Since the true values of the 
indicator in the areas are not available (they are the target parameters), direct estimators.                               
𝛿𝛿𝑑𝑑, 𝑑𝑑 = 1, … ,𝐷𝐷are considered instead. Thus, the model at the area level assumes that  

 𝛿𝛿𝑑𝑑 = 𝒙𝒙𝑑𝑑′𝜶𝜶 + 𝜀𝜀𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷, (14) 

where the error terms 𝜀𝜀𝑑𝑑  are assumed to be independent, with zero expectation and known variance  
𝜓𝜓𝑑𝑑  , 𝑑𝑑 = 1, … ,𝐷𝐷. Note that since 𝒙𝒙𝑑𝑑  is the population value and therefore has zero variance, 𝜓𝜓𝑑𝑑  is the 
variance of the direct estimator 𝛿𝛿𝑑𝑑, i.e., 𝜓𝜓𝑑𝑑 = var(𝛿𝛿𝑑𝑑). In practice, these variances are estimated with 
microdata from the survey. The synthetic regression estimator (REG1-SYN) for the area indicator 𝑑𝑑 is 
then expressed by the prediction of the indicator by means of the model, i.e. if                                                              
𝜶𝜶� = (∑ 𝜓𝜓𝑑𝑑−1𝐷𝐷

𝑑𝑑=1 𝒙𝒙𝑑𝑑𝒙𝒙𝑑𝑑′)−1 ∑ 𝜓𝜓𝑑𝑑−1𝐷𝐷
𝑑𝑑=1 𝒙𝒙𝑑𝑑𝛿𝛿𝑑𝑑  is the estimator of 𝜶𝜶 obtained by weighted least squares, the 

REG1-SYN estimator of 𝛿𝛿𝑑𝑑  is expressed as  

𝛿𝛿𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅1−𝑆𝑆𝑆𝑆𝑆𝑆 = 𝒙𝒙𝑑𝑑′𝜶𝜶�. 

In model (14), 𝜀𝜀𝑑𝑑  is the error due to the fact that we use a direct estimator 𝛿𝛿𝑑𝑑  instead of the true 
value of the indicator 𝛿𝛿𝑑𝑑, since this is unknown, and the true value 𝛿𝛿𝑑𝑑  is assumed to be exactly equal to 
the regression term, 𝛿𝛿𝑑𝑑 = 𝒙𝒙𝑑𝑑′𝜶𝜶, leaving no degree of heterogeneity to the indicators of the different 
areas in respect of this regression. Model types which, like (14), do not incorporate area effects showing 
such heterogeneity, are called "synthetic models". In fact, the bias under the design of 𝛿𝛿𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅1−𝑆𝑆𝑌𝑌𝑁𝑁 for 
known 𝜶𝜶 is expressed as 𝒙𝒙𝑑𝑑′𝜶𝜶 − 𝛿𝛿𝑑𝑑, which does not depend on the sample size of the area 𝑛𝑛𝑑𝑑; therefore, 
this bias does not decrease when the sample size of the area increases.  

One advantage of the model-based estimators is that they allow estimation in unsampled areas; 
that is, with sample size equal to zero, if the corresponding auxiliary information is available. For an area 
𝑑𝑑 with 𝑛𝑛𝑑𝑑 = 0, if we have 𝒙𝒙𝑑𝑑, then the synthetic estimator of 𝛿𝛿𝑑𝑑  is likewise 𝛿𝛿𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅1−𝑆𝑆𝑆𝑆𝑆𝑆 = 𝒙𝒙𝑑𝑑′𝜶𝜶�. 

To estimate the FGT poverty indicator of order 𝛼𝛼, 𝛿𝛿𝑑𝑑 = 𝐹𝐹𝛼𝛼𝛼𝛼, using this procedure, we need 
auxiliary area-level variables that verify the model at the area level 

 𝐹𝐹�𝛼𝛼𝛼𝛼 = 𝒙𝒙𝑑𝑑′𝜶𝜶 + 𝜀𝜀𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷, (15) 

if 𝜓𝜓𝑑𝑑 = var(𝐹𝐹�𝛼𝛼𝛼𝛼), 𝑑𝑑 = 1, … ,𝐷𝐷 are known. Thus, the synthetic regression estimator for the FGT indicator 
in the area 𝑑𝑑, 𝐹𝐹𝛼𝛼𝛼𝛼, is expressed as  

𝐹𝐹�𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅1−𝑆𝑆𝑆𝑆𝑆𝑆 = 𝒙𝒙𝑑𝑑′𝜶𝜶�, 

where, in this case, 𝜶𝜶� = (∑ 𝜓𝜓𝑑𝑑−1𝐷𝐷
𝑑𝑑=1 𝒙𝒙𝑑𝑑𝒙𝒙𝑑𝑑′)−1 ∑ 𝜓𝜓𝑑𝑑−1𝐷𝐷

𝑑𝑑=1 𝒙𝒙𝑑𝑑𝐹𝐹�𝛼𝛼𝛼𝛼.  

The model (14) assumed by the REG1-SYN estimator links all the areas by means of the common 
regression parameter 𝜶𝜶. When estimating this common parameter with the direct estimators𝛿𝛿𝑑𝑑  of all 
the areas, we obtain an estimator with a much smaller variance than for the direct estimator. However, 
this model does not incorporate heterogeneity between the areas, apart from the heterogeneity 
explained or due to the auxiliary variables considered. In practice, it is difficult to have data for all the 
auxiliary variables that fully explain the variation of the indicators 𝛿𝛿𝑑𝑑  in the areas in which we wish to 
estimate. Therefore, the synthetic model (14) might not represent many of the cases that appear in 
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practice, providing biased estimators in these cases. In addition, note that, in the most favourable case 
of knowing the true model (and the true value of 𝜶𝜶), the REG1-SYN estimator would be 𝒙𝒙𝑑𝑑′𝜶𝜶, with the 
result that the data for the variable of interest obtained from the survey for that area would not be being 
used. Thus, this could be considered wasteful for areas with a large sample size. Furthermore, the 
estimator obtained may differ greatly from the direct estimator, which would be reliable for these areas. 
This is a major drawback with synthetic estimators (or models). On the other hand, as mentioned in the 
introduction, as they are potentially biased estimators under the design, their quality should be 
evaluated in terms of MSE rather than variance (which will be small, leading one to think, wrongly, that 
the estimator is of good quality); however, there are no known estimators of the MSE under the design 
that are stable whilst also different for each area.  

 These estimators can be summarised as follows:   

Target indicators: general parameters.   

Data requirements:  

• Aggregate data (e.g., population means) of the 𝑝𝑝 auxiliary variables considered in the areas, 
𝒙𝒙𝑑𝑑, 𝑑𝑑 = 1, … ,𝐷𝐷. 

Advantages:  

• Variance can decrease considerably in comparison with a direct estimator.  

• It can be estimated in unsampled areas. 

Disadvantages:  

• The synthetic regression model considered does not represent those cases in which not all the 
auxiliary variables that explain the heterogeneity between areas are available. Therefore, in 
these cases, the resulting estimators may have a substantial bias.  

• It is necessary to analyse the model thoroughly (e.g., by means of the residuals), as the bias of 
these estimators depends on the goodness of fit of the model. In particular, it is very 
important to check if there is an area effect, since this model does not consider it.  

• If the model is known, the variable of interest data for that area would not be used.  

• It does not extend to the direct estimator when the sample size increases.  

• There are no known estimators of the MSE under the design that are stable whilst also 
different for each area.  

• They require readjustment to check the benchmarking property whereby the sum of the 
estimated totals in the areas of a larger region matches the direct estimator for that area.  

C. Synthetic regression estimator at individual level 

We now consider that individual-level data (or microdata) is available for the 𝑝𝑝 auxiliary variables in the 
survey, 𝒙𝒙𝑑𝑑𝑑𝑑, 𝑖𝑖 ∈ 𝑠𝑠𝑑𝑑, 𝑑𝑑 = 1, … ,𝐷𝐷. In this case, a synthetic regression estimator for the indicator of interest 
can be obtained by assuming an individual-level linear regression model for 𝑌𝑌𝑑𝑑𝑑𝑑. 𝒚𝒚𝑑𝑑 = (𝑌𝑌𝑑𝑑1, … ,𝑌𝑌𝑑𝑑𝑁𝑁𝑑𝑑)′ 
denotes the vector of values of the variable in question for the individuals in the area 𝑑𝑑.  

The indicator to be estimated in the area 𝑑𝑑 is a function of this vector, i.e., 𝛿𝛿𝑑𝑑 = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑). The basic      
synthetic regression model considers that the variables 𝑌𝑌𝑑𝑑𝑑𝑑  for all individuals in the population             
follow the linear regression model  
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 𝑌𝑌𝑑𝑑𝑑𝑑 = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷 + 𝜀𝜀𝑑𝑑𝑑𝑑 ,  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,𝑑𝑑 = 1, … ,𝐷𝐷, (16) 

 

where the errors 𝜀𝜀𝑑𝑑𝑑𝑑  are independent, with zero expectation and variance 𝜎𝜎2𝑘𝑘𝑑𝑑𝑑𝑑2 , where 𝑘𝑘𝑑𝑑𝑑𝑑  are known 
constants that represent the possible heteroscedasticity in the model (𝑘𝑘𝑑𝑑𝑑𝑑 = 1 for all 𝑖𝑖 and 𝑑𝑑 if there is 
no heteroscedasticity). Estimating 𝜷𝜷 using the weighted least squares estimator 𝜷𝜷� =
(∑ ∑ 𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑

𝐷𝐷
𝑑𝑑=1 𝒙𝒙𝑑𝑑𝑑𝑑𝒙𝒙𝑑𝑑𝑑𝑑′)−1 ∑ ∑ 𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑

𝐷𝐷
𝑑𝑑=1 𝒙𝒙𝑑𝑑𝑑𝑑𝑌𝑌𝑑𝑑𝑑𝑑, where 𝑎𝑎𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑑𝑑𝑑𝑑−2, we obtain predictions, through the 

model, for every individual in the area, 𝑌𝑌�𝑑𝑑𝑑𝑑 = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷�, 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑. The vector of predictions for the area 
𝑑𝑑 is then 𝒚𝒚�𝑑𝑑 = (𝑌𝑌�𝑑𝑑1, … ,𝑌𝑌�𝑑𝑑𝑁𝑁𝑑𝑑)′. Using this vector instead of 𝒚𝒚𝑑𝑑  to calculate the indicator, we obtain the 
synthetic regression estimator of 𝛿𝛿𝑑𝑑, i.e  

𝛿𝛿𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅2−𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛿𝛿𝑑𝑑(𝒚𝒚�𝑑𝑑). 

For example, for the mean of the area 𝑑𝑑, 𝛿𝛿𝑑𝑑 = 𝑌̄𝑌𝑑𝑑, if 𝑿̄𝑿𝑑𝑑  is the vector of means of the 𝑝𝑝 auxiliary 
variables considered, the synthetic estimator based on the model (16) would be  

𝑌̄𝑌�𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅2−𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑿̄𝑿𝑑𝑑
′𝜷𝜷� . 

For an unsampled area, this estimator is obtained in the same way. For a known 𝜷𝜷, the bias under 
the design of the mean estimator is 𝑿̄𝑿𝑑𝑑

′𝜷𝜷 − 𝑌̄𝑌𝑑𝑑, which does not depend on the sample size of the area 
𝑛𝑛𝑑𝑑; therefore, this bias does not decrease when the sample size increases. 

Once again, if we wanted to estimate the FGT indicators of poverty, we would have to find 
variables 𝒙𝒙𝑑𝑑𝑑𝑑  linearly related to 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑; i.e., that verified the model  

 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑 = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷 + 𝜀𝜀𝑑𝑑𝑑𝑑 ,  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,𝑑𝑑 = 1, … ,𝐷𝐷. (17) 

However, finding variables linearly related to 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑  is rare in practice. It would be more suitable to 
assume the model for the variables of interest, that is, the variables used to measure purchasing power, 
𝐸𝐸𝑑𝑑𝑑𝑑  or, even better, for a bijective transformation of these variables, 𝑇𝑇(𝐸𝐸𝑑𝑑𝑑𝑑)since 𝐸𝐸𝑑𝑑𝑑𝑑  are usually highly 
asymmetric in their distribution and therefore a linear model for these variables would not be very 
appropriate. In practice, it is very common to use the logarithm transformation; that is,                                  
𝑌𝑌𝑑𝑑𝑑𝑑 = log (𝐸𝐸𝑑𝑑𝑖𝑖 + 𝑐𝑐) would be taken as a response variable in the model, where 𝑐𝑐 > 0 is a positive 
constant that makes the distribution of 𝑌𝑌𝑑𝑑𝑑𝑑  approximately normal. This constant can be determined by 
fitting the model for a sequence of values of 𝑐𝑐 in the range of 𝐸𝐸𝑑𝑑𝑖𝑖, and taking the value of 𝑐𝑐 for which a 
measure of skewness of the model residuals (e.g., Pearson's skewness coefficient) is as close as possible 
to zero.  

As in the case of the previous synthetic estimators, if all the auxiliary variables that explain the 
heterogeneity of 𝑌𝑌𝑑𝑑𝑑𝑑  in the areas are not available, (i.e., the synthetic model that is assumed is not 
verified) then these estimators will be biased. However, its variance will be small since the regression 
coefficient is estimated using the full sample, which is usually large. Therefore, the synthetic regression 
estimator will have a small sampling error. These estimators require a study of the goodness of fit of the 
assumed model in order to avoid large biases. Again, at best, if we knew the model exactly, these 
estimators would use only the auxiliary variable data and not the variable of interest data observed in 
the area in question, and they do not come close to the direct estimators for areas with sufficient sample 
size. In addition, there are no known reliable estimators of the MSE under the design that are different 
for each area.  

 

 

 



ECLAC – Statistics Series No. 97 Disaggregating data in household surveys… 40 

 

These estimators can be summarised as follows:   

Target indicators: general parameters.   

Data requirements:  

• Sample observations of the 𝑝𝑝 auxiliary variables related to the variable of interest, obtained 
from the same survey from which the data of the variable of interest is obtained.  

• For means/totals indicators of the response variable considered in the model, population 
means/totals of the 𝑝𝑝 auxiliary variables considered in the areas, 𝑿̄𝑿𝑑𝑑, 𝑑𝑑 = 1, … ,𝐷𝐷. For      
non-linear indicators in the response variables of the model, the values of the 𝑝𝑝 auxiliary 
variables are needed for all individuals (m.d.) in that area, {𝒙𝒙𝑑𝑑𝑑𝑑;  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,𝑑𝑑 = 1, … ,𝐷𝐷}.  

Advantages:  

• It can considerably reduce the variance of the direct estimators and of the estimators obtained 
from an area-level model.  

• It can be estimated in unsampled areas. 

Disadvantages:  

• The synthetic regression model considered does not represent those cases in which not all the 
auxiliary variables that explain the heterogeneity between areas are available. Therefore, in 
these cases, the resulting estimators may have a substantial bias.  

• It is necessary to analyse the model thoroughly (e.g., by means of the residuals), as the bias of 
these estimators depends on the goodness of fit of the model. In particular, it is very 
important to check if there is an area effect, since this model does not consider it.  

• If the model was known exactly, they would not use the variable of interest data for that area.  

• It does not extend to the direct estimator when the sample size increases.  

• There are no known estimators of the MSE under the design that are stable whilst also 
different for each area.  

• They require readjustment to check the benchmarking property whereby the sum of the 
estimated totals in the areas of a larger region matches the direct estimator for that area.  

D. Composite estimators 

As discussed in previous chapters, direct estimators are (at least approximately) unbiased under the 
sample design, but may have large variance for areas of small sample sizes. On the other hand, synthetic 
estimators have small variance, but can be considerably biased under the design. Composite estimators 
are designed to decrease the variance of the direct estimator in exchange for a portion of the bias of a 
synthetic estimator. The intention is to simultaneously improve the efficiency of the direct estimator 
and to reduce the bias of the synthetic estimator. Let 𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷  be a generic direct estimator of 𝑌̄𝑌𝑑𝑑  and 𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆 
a synthetic estimator. A composite estimator of 𝑌̄𝑌𝑑𝑑  would look like  

𝑌̄𝑌�𝑑𝑑𝐶𝐶 = 𝜙𝜙𝑑𝑑𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 + (1 − 𝜙𝜙𝑑𝑑)𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆,  0 ≤ 𝜙𝜙𝑑𝑑 ≤ 1. 

The weight 𝜙𝜙𝑑𝑑  given to the direct estimator can be set either semi-optimally by minimising an 
approximation of the mean squared error (MSE) under the sample design, which can only be done 
approximately, or by setting it arbitrarily. Drew, Singh, and Choudhry (1982) proposed a weight 𝜙𝜙𝑑𝑑  that 
depends on the sample size of the area, giving rise to the sample-size dependent (SSD) estimator. 
Assuming a pre-set value 𝛿𝛿 > 0 (by default you can assume 1), the proposed weight would look like  
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𝜙𝜙𝑑𝑑 = � 1, si 𝑁𝑁�𝑑𝑑 ≥ 𝛿𝛿𝑁𝑁𝑑𝑑;
𝑁𝑁�𝑑𝑑/(𝛿𝛿𝑁𝑁𝑑𝑑), si 𝑁𝑁�𝑑𝑑 < 𝛿𝛿𝑁𝑁𝑑𝑑 ,

 

where 𝑁𝑁�𝑑𝑑 = ∑ 𝑤𝑤𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑 . To understand the intuitive idea of this estimator, note that, under simple 
random sampling (SRS) in the population (in that case the size of the area 𝑛𝑛𝑑𝑑  is random), one obtains  

𝑁𝑁�𝑑𝑑 = �𝑤𝑤𝑑𝑑𝑖𝑖
𝑖𝑖∈𝑠𝑠𝑑𝑑

= �
𝑁𝑁
𝑛𝑛

𝑖𝑖∈𝑠𝑠𝑑𝑑

= 𝑁𝑁
𝑛𝑛𝑑𝑑
𝑛𝑛

 

and since 𝑁𝑁�𝑑𝑑  is unbiased, its expectation under the design is equal to 𝑁𝑁𝑁𝑁𝜋𝜋(𝑛𝑛𝑑𝑑)/𝑛𝑛 = 𝑁𝑁𝑑𝑑, so 𝐸𝐸𝜋𝜋(𝑛𝑛𝑑𝑑) =
𝑛𝑛𝑁𝑁𝑑𝑑/𝑁𝑁 and therefore the weight proves to be  

𝜙𝜙𝑑𝑑 = �
1 si 𝑛𝑛𝑑𝑑 ≥ 𝛿𝛿𝐸𝐸𝜋𝜋(𝑛𝑛𝑑𝑑);

𝑛𝑛𝑑𝑑/{𝛿𝛿𝐸𝐸𝜋𝜋(𝑛𝑛𝑑𝑑)} si 𝑛𝑛𝑑𝑑 < 𝛿𝛿𝐸𝐸𝜋𝜋(𝑛𝑛𝑑𝑑). 

If we set 𝛿𝛿 = 1, then the SSD estimator gives a weight of 1 to the direct estimator when the area 
sample size is greater than or equal to the expected sample size and gives a weight less than 1 otherwise. 
However, a given area may have a small sample size 𝑛𝑛𝑑𝑑  , but this may exceed the expected size, which 
would give weight 1 to the direct estimator and therefore there would be no improvement in efficiency 
with respect to the direct estimator.  

The SSD estimator was used in the Canadian Labour Force Survey to obtain estimators for census 
tracts assuming 𝛿𝛿 = 2/3 (see Drew, Singh, and Choudhry (1982)). However, for most of the areas 
considered, the weight of the direct estimator turned out to be 𝜙𝜙𝑑𝑑 = 1; for a few, the weight                       
was 𝜙𝜙𝑑𝑑 = 0.9, but in no case was the weight obtained less than 0.8. Therefore, the gain in efficiency 
over the direct estimator was very limited. As in this application, the problem with this estimator is that 
it tends to give the direct estimators a weight close to 1 even though the sample size of the area is small, 
with no improvement in efficiency with respect to the direct estimator. Furthermore, the weight 𝜙𝜙𝑑𝑑  
does not consider whether or not the areas are very homogeneous as regards satisfying the model 
considered by the synthetic estimator. It is therefore independent of the quality of the synthetic 
estimator (or the goodness of fit of the synthetic model) for each area. Therefore, these estimators can 
be considered too simple to return a discernible improvement in efficiency over the direct estimators.  

As previously stated, it is possible to obtain approximately optimal composite estimators with 
respect to the sample design assuming the weight 𝜙𝜙𝑑𝑑  that (approximately) minimises the MSE under 
the composite estimator design, MSE𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝐶𝐶). Considering that the covariance between the direct 
estimator and the synthetic estimator is negligible, and by minimising  

MSE𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝐶𝐶) ≈ 𝜙𝜙𝑑𝑑2var𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷) + (1 − 𝜙𝜙𝑑𝑑)2MSE𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆), 

the optimum weight is obtained  

 
𝜙𝜙𝑑𝑑∗ = MSE𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆)/{var𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷) + MSE𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆)}. 

 
(18) 

An estimator of MSE𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆) is  

MSE�𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆) = (𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷)2 − var� 𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷), 

(see Rao and Molina (2015, p.44)). By replacing this estimator in the optimal weight 𝜙𝜙𝑑𝑑∗   given in (18), we 
obtain an estimator of this optimal weight, expressed as  

𝜙𝜙�𝑑𝑑∗ = MSE�𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆)/(𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷)2 = 1 − var� 𝜋𝜋(𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷)/(𝑌̄𝑌�𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷)2. 
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We can see that this weight depends on the direct estimator 𝑌̄𝑌�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷, which is very volatile. This 
means that the estimated optimal weight 𝜙𝜙�𝑑𝑑∗  is also very volatile. A more stable estimated weight can 
be obtained by averaging over all the areas, as follows:  

𝜙𝜙�∗ = �MSE�𝜋𝜋

𝐷𝐷

ℓ=1

(𝑌̄𝑌�ℓ𝑆𝑆𝑆𝑆𝑆𝑆)/�(
𝐷𝐷

ℓ=1

𝑌̄𝑌�ℓ𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑌̄𝑌�ℓ𝐷𝐷𝐷𝐷𝐷𝐷)2 

= 1 − �� var� 𝜋𝜋

𝐷𝐷

ℓ=1

(𝑌̄𝑌�ℓ𝐷𝐷𝐷𝐷𝐷𝐷)/�(
𝐷𝐷

ℓ=1

𝑌̄𝑌�ℓ𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑌̄𝑌�ℓ𝐷𝐷𝐷𝐷𝐷𝐷)2� 

The resulting weight, 𝜙𝜙�∗, is very stable, but it does not depend on the area 𝑑𝑑; i.e., it is constant 
for all areas, and doesn’t even depend on their sample size. Due to these disadvantages, optimal 
composite estimators are probably less used in practice than the "model-based" ones that we will see in 
the next chapter.  

Composite estimators are interesting because of the trade-off achieved between bias and 
variance. However, in the following chapters we will see that composite estimators can be obtained 
more efficiently than direct estimators from regression models that take account of heterogeneity 
across areas. These composite estimators will be optimal with respect to the probability distribution 
triggered by the assumed model, and that is why they are called "model-based" estimators. In these 
estimators, the weights depend on the sample size of the area and the goodness of fit of the synthetic 
model, with greater weight given to the direct estimators when the synthetic model is poor             
(auxiliary variables that are not very informative or very heterogeneous areas) or when the sample        
size of the area is large, and greater weight is given to the synthetic estimator as the sample                         
size decreases or the model has more predictive capacity. Therefore, model-based estimators         
exceed these simple composite estimators.  

Next, we will summarise the characteristics of the SSD estimator, as the most common 
representative of the composite estimators:   

Target indicators: additive parameters.   

Data requirements:  

• Sampling weights 𝑤𝑤𝑑𝑑𝑑𝑑  for sample individuals in the area 𝑑𝑑.  

• Population size of the area, 𝑁𝑁𝑑𝑑, whether the HT estimator of the mean or the Hájek estimator 
of the total is used.  

Advantages:  

• They are designed to reduce both the bias of the synthetic estimator and the variance of the 
direct estimator. They cannot be less efficient than the direct estimator and the bias cannot 
be greater than the synthetic estimator.  

Disadvantages:  

• For an area of small sample size, as long as this size is not smaller than the expected sample 
size, no information is borrowed from the other areas through the synthetic estimator. 
Therefore, there will be no gain in efficiency with respect to the direct estimator considered.  

• The weight given to the synthetic estimator does not depend on how well the variable of 
interest is explained by the auxiliary variables; i.e., it does not depend on the goodness of fit 
of the model.  
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• They cannot be calculated for unsampled areas or domains; i.e., with sample size 𝑛𝑛𝑑𝑑                 
equal to zero.  

• There are no known stable estimators of the MSE under the design that are also different for 
each area.  

• They require readjustment to verify the benchmarking property so that the sum of the 
estimated totals in the areas of a larger region matches the direct estimator for that region.  

Example 4.  Composite estimators of poverty incidence, with R. Continuing the previous 
examples, we now demonstrate how to obtain SSD composite estimators of poverty incidence for the 
provinces, using the direct HT estimators obtained in Example 1 and the synthetic post-stratified 
estimators obtained in Example 3. To do so, we call on the ssd() function using the default value of the 
delta parameter (delta=1) and save the results: 

povinc.ssd.res<-ssd(dom=prov,sweight=weight,domsize=sizeprov[,c(2,3)], 
 direct=povinc.dir.res[,c("Domain","Direct")],synthetic=povinc.psedu.res) 
povinc.ssd<-povinc.ssd.res$ssd 
  

We analyse the weight given by the SSD estimator to the direct estimator for each province by 
means of a descriptive summary of these weights:  

summary(povinc.ssd.res$CompWeight) 
 
The result is: 
 
   Min.  1st Qu.   Median    Mean  3rd Qu.    Max. 
 0.4846   0.8800   0.9779   0.9224   1.0000   1.0000 
 

We can see that the direct estimators are given a weight equal to one for at least a quarter of the 
provinces. In those specific provinces, information is not being borrowed from the others. On the other 
hand, in this estimator this weight does not depend on the variable of interest. If we estimate, for 
example, the average income, we get exactly the same weights. Indeed, if we graphically compare the 
SSD estimates with the direct HT and synthetic post-stratified estimates (Figure 5), we can see that they 
are very similar to the direct HT estimates. In this graph, the provinces (on the axis ) are arranged from 
smallest to largest sample size, and their sample sizes are indicated on the axis labels. The R code 
implemented to obtain the previous figures is as follows: 

o<-order(nd) 
k<-2 
M<-max(povinc.psedu,povinc.dir,povinc.ssd) 
m<-min(povinc.psedu,povinc.dir,povinc.ssd) 
plot(1:D,povinc.dir[o],type="n",ylim=c(m,M+(M-m)/k),xlab="Province", ylab="Estimator",xaxt="n") 
points(1:D,povinc.dir[o],type="b",col=1,lty=1,pch=1,lwd=2) 
points(1:D,povinc.greg[o],type="b",col=3,lty=3,pch=3,lwd=2) 
points(1:D,povinc.ssd[o],type="b",col=4,lty=4,pch=4,lwd=2) 
points(1:D,povinc.psedu[o],type="b",col=2,lty=2,pch=2,lwd=2) 
axis(1, at=1:D, labels=nd[o]) 
legend(1,M+(M-m)/k,legend=c("HT","GREG","SSD","PS-SYN"),ncol=4,col=c(1,3,4,2), 
lwd=rep(2,3),lty=c(1,3,4,2),pch=c(1,3,4,2)) 
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Figure 5 
HT, PS-SYN and SSD estimates of the poverty incidence for each province 

(In proportions) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Prepared by the author. 
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V. Model-based indirect methods 

Model-based small area estimators fall into the group of indirect estimators since they borrow 
information from other areas. However, they are somewhat more sophisticated than the basic indirect 
estimators discussed in chapter IV, in that they incorporate heterogeneity between areas that is not 
explained by the auxiliary variables considered. This is done by incorporating additive random effects 
on the areas into the regression model considered. We will see that these random effects provide a very 
good property to linear model-based estimators, which is that they can be written as composite 
estimators that extend to a direct estimator in areas with sufficient sample size. Having all the variables 
that fully explain the heterogeneity between areas of our variable of interest will rarely occur. Therefore, 
these models are significantly more realistic than synthetic models, resulting in estimators with lower 
bias under the sample design. 

A. EBLUP based on the Fay-Herriot model 

The Fay-Herriot (FH) model is a popular area-level model that was introduced by Fay and Herriot (1979) 
to estimate per capita income in small areas of the USA.  This model is currently used by the U.S. Census 
Bureau. Within the Small Area Income and Poverty Estimates (SAIPE) programme to estimate 
proportions of poor school-age children in counties and school districts (for further details see Bell (1997) 
or http://www.census.gov/ hhes/www/saipe). This model has also been used in Chile to estimate poverty 
incidence rates in Chilean comunas (see Casas-Cordero Valencia, Encina and Lahiri (2015)) and in Spain 
to estimate the poverty incidence and poverty gap in provinces by gender (Molina and Morales, 2009).  

This model links the indicators of interest for all the areas 𝛿𝛿𝑑𝑑, 𝑑𝑑 = 1, … ,𝐷𝐷, assuming that they 
vary with respect to a vector with values of 𝑝𝑝 auxiliary variables 𝒙𝒙𝑑𝑑  constantly for all the areas, following 
the linear regression model  

 𝛿𝛿𝑑𝑑 = 𝒙𝒙𝑑𝑑′𝜷𝜷 + 𝑢𝑢𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷, (19) 

where 𝜷𝜷 is the vector of coefficients common to all areas and 𝑢𝑢𝑑𝑑  is the regression error term, different 
for each area, also known as the random area effect 𝑑𝑑. These random effects 𝑢𝑢𝑑𝑑  represent the 

http://www.census.gov/
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heterogeneity of the indicators 𝛿𝛿𝑑𝑑  across the areas, which is not due to (or not explained by) the auxiliary 
variables considered. In the simplest model, such random effects 𝑢𝑢𝑑𝑑  are assumed to be independent 
and identically distributed (IID), with unknown common variance 𝜎𝜎𝑢𝑢2; this is indicated by 𝑢𝑢𝑑𝑑 ∼ (𝑖𝑖𝑖𝑖𝑖𝑖 0,𝜎𝜎𝑢𝑢2).  

Since the true values of the indicators 𝛿𝛿𝑑𝑑  are not observable, the model (19) cannot be fitted. 
When using a direct estimator 𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷  of 𝛿𝛿𝑑𝑑, we must consider that this estimator has a sampling error. 
The FH model considers this direct estimator 𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷  to be unbiased under the design. In this case, we can 
represent the sampling error of this estimator by using the model:  

 𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛿𝛿𝑑𝑑 + 𝑒𝑒𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷, (20) 

where 𝑒𝑒𝑑𝑑  is the sampling error in the area 𝑑𝑑. It is assumed that the sampling errors 𝑒𝑒𝑑𝑑  are independent 
of each other and are also independent of the random effects on the areas, 𝑢𝑢𝑑𝑑, and have zero mean 
value and known variances 𝜓𝜓𝑑𝑑; i.e., 𝑒𝑒𝑑𝑑 ∼ (𝑖𝑖𝑖𝑖𝑖𝑖 0,𝜓𝜓𝑑𝑑). In practice, these variances, 𝜓𝜓𝑑𝑑 = var𝜋𝜋(𝛿̂𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷|𝛿𝛿𝑑𝑑), 
𝑑𝑑 = 1, … ,𝐷𝐷, are estimated using the microdata from the survey. Combining models (19) and (20), we 
obtain the linear mixed model expressed as  

 𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 = 𝒙𝒙𝑑𝑑′𝜷𝜷 + 𝑢𝑢𝑑𝑑 + 𝑒𝑒𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷. (21) 

Using the Lagrange multiplier method to calculate the linear estimator in the data 𝛿𝛿𝑑𝑑𝐷𝐷𝐼𝐼𝐼𝐼,                 
𝑑𝑑 = 1, … ,𝐷𝐷, which is unbiased under the model (21), and which minimises the MSE under                                 
the model, we obtain the best linear unbiased predictor (BLUP) of 𝛿𝛿𝑑𝑑 = 𝒙𝒙𝑑𝑑′𝜷𝜷 + 𝑢𝑢𝑑𝑑. The resulting 
estimator is obtained by simply fitting the mixed model (21); i.e., the BLUP under the FH model                        
of 𝛿𝛿𝑑𝑑  is expressed as  

 𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹 = 𝒙𝒙𝑑𝑑′𝜷𝜷� + 𝑢𝑢�𝑑𝑑 , (22) 

where 𝑢𝑢�𝑑𝑑 = 𝛾𝛾𝑑𝑑(𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 − 𝒙𝒙𝑑𝑑′𝜷𝜷�) is the BLUP of 𝑢𝑢𝑑𝑑, where 𝛾𝛾𝑑𝑑 = 𝜎𝜎𝑢𝑢2/(𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑) and where 𝜷𝜷� is the 
weighted least squares estimator of 𝜷𝜷 under the model (21), expressed as  

𝜷𝜷� = ��𝛾𝛾𝑑𝑑

𝐷𝐷

𝑑𝑑=1

𝒙𝒙𝑑𝑑𝒙𝒙𝑑𝑑′�

−1

�𝛾𝛾𝑑𝑑

𝐷𝐷

𝑑𝑑=1

𝒙𝒙𝑑𝑑𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 . 

Note that, substituting 𝑢𝑢�𝑑𝑑 = 𝛾𝛾𝑑𝑑(𝛿̂𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 − 𝒙𝒙𝑑𝑑′𝜷𝜷�) into the BLUP under the FH model given in (22), 
we can express the BLUP as a convex linear combination of the direct estimator and the synthetic 
regression estimator, i.e,  

 𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹 = 𝛾𝛾𝑑𝑑𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 + (1 − 𝛾𝛾𝑑𝑑)𝒙𝒙𝑑𝑑′𝜷𝜷�, (23) 

with a weight for the direct estimator expressed as 𝛾𝛾𝑑𝑑 = 𝜎𝜎𝑢𝑢2/(𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑) ∈ (0,1). This weight depends 
on the sample size of the area by means of the variance 𝜓𝜓𝑑𝑑  of the direct estimator and the goodness of 
fit of the synthetic model measured by 𝜎𝜎𝑢𝑢2 (in other words, the unexplained heterogeneity between the 
areas). Therefore, for an area 𝑑𝑑 in which the direct estimator 𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷  is efficient due to having sufficient 
sample size; i.e. with a small sample variance 𝜓𝜓𝑑𝑑  compared to the unexplained heterogeneity 𝜎𝜎𝑢𝑢2, 𝛾𝛾𝑑𝑑 =
𝜎𝜎𝑢𝑢2/(𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑) is close to one and therefore 𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹  gives more weight to the direct estimator. On the other 
hand, in areas 𝑑𝑑 where the direct estimator lacks quality due to small sample size, where its sample 
variance 𝜓𝜓𝑑𝑑  is larger than the unexplained heterogeneity 𝜎𝜎𝑢𝑢2, then 𝛾𝛾𝑑𝑑  approaches zero and therefore 
more weight is given to the synthetic regression estimator 𝒙𝒙𝑑𝑑′𝜷𝜷�, which uses data from all areas to 
estimate the common parameter 𝜷𝜷. In other words, this estimator borrows information from the other 
areas by means of the synthetic regression estimator 𝒙𝒙𝑑𝑑′𝜷𝜷� where required, depending on the efficiency 
of the direct estimator.  

Moreover, the fact that the BLUP 𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹  comes closer to the direct estimator when the sample size 
of the area is large (𝜓𝜓𝑑𝑑  small) is a very desirable property, since we do not need to know when an area 
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is "small" enough to use this estimator instead of the direct estimator, since it extends to the direct 
estimator when the sample size grows, and it also improves the direct estimator in areas with small 
sample size. Therefore, in principle, this estimator can be used for all areas as long as there is a "small" 
one (if there were none, it wouldn’t be necessary to use it).  

The BLUP of 𝛿𝛿𝑑𝑑  depends on the true value of the variance 𝜎𝜎𝑢𝑢2 of the random effects 𝑢𝑢𝑑𝑑.                             
In practice, this variance is unknown and must be estimated. Common estimation methods are 
maximum likelihood (ML) and restricted/residual ML (REML). The REML method corrects the variance 
estimator 𝜎𝜎𝑢𝑢2 or the degrees of freedom due to estimating the regression coefficients 𝜷𝜷 and thus 
provides a less biased estimator for the finite sample size𝑛𝑛. A method of adjustment based on moments, 
which does not need a parametric distribution to obtain the likelihood, is that advanced by Fay and 
Herriot (1979), which we call the FH method. Let 𝜎𝜎�𝑢𝑢2 be a consistent estimator of 𝜎𝜎𝑢𝑢2like those obtained 
by these methods. By replacing 𝜎𝜎𝑢𝑢2 by 𝜎𝜎�𝑢𝑢2 en (22), we obtain the empirical BLUP (EBLUP) of 𝛿𝛿𝑑𝑑,  

 𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹 = 𝛾𝛾�𝑑𝑑𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 + (1 − 𝛾𝛾�𝑑𝑑)𝒙𝒙𝑑𝑑′𝜷𝜷� , (24) 

where 𝛾𝛾�𝑑𝑑 = 𝜎𝜎�𝑢𝑢2/(𝜎𝜎�𝑢𝑢2 + 𝜓𝜓𝑑𝑑) and 𝜷𝜷� = (∑ 𝛾𝛾�𝑑𝑑𝐷𝐷
𝑑𝑑=1 𝒙𝒙𝑑𝑑𝒙𝒙𝑑𝑑′)−1 ∑ 𝛾𝛾�𝑑𝑑𝐷𝐷

𝑑𝑑=1 𝒙𝒙𝑑𝑑𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷. In this paper, for purposes of 
conciseness, we will call the EBLUP based on the FH model given in (24) the FH estimator.  

If the parameters of the model 𝜷𝜷 and 𝜎𝜎𝑢𝑢2 are known, the MSE of the BLUP, 𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹, based on the 
model (21) is expressed as  

MSE(𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹) = 𝛾𝛾𝑑𝑑𝜓𝜓𝑑𝑑 ≤ 𝜓𝜓𝑑𝑑 = var𝜋𝜋(𝛿̂𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷|𝛿𝛿𝑑𝑑). 

Therefore, given the true value of the indicator 𝛿𝛿𝑑𝑑, if 𝜎𝜎𝑢𝑢2 and 𝜷𝜷 are known, the BLUP under the   
FH model, 𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹, cannot be less efficient than the direct estimator. In practice, 𝜎𝜎𝑢𝑢2 and 𝜷𝜷 are estimated 
and the error due to the estimation of these two parameters is added to the MSE of the FH estimator. 
However, these two terms that are added to the MSE tend to zero when the number of areas 𝐷𝐷 tends 
to infinity. Therefore, for a sufficient number of areas 𝐷𝐷 , the FH estimator is still likely to improve on 
the direct estimator in terms of MSE. That is why these estimators tend to improve in most areas as long 
as there are a sufficient number of areas. However, improvements in efficiency will be small if the 
number of areas is not sufficiently large. Unit-level models, based on the total sample size 𝑛𝑛, can be 
much more efficient than area-level models, as long as there are auxiliary variables at the individual level 
that are sufficiently informative about the response variable. However, an advantage of the FH 
estimator shown in (24) is that it uses the weights of the sample design through the direct estimator and 
is consistent under the design when the sample size of the area 𝑛𝑛𝑑𝑑  grows, while the weight of the direct 
estimator is 𝛾𝛾𝑑𝑑 > 0. Furthermore, its absolute bias under the design is expressed as  

(1 − 𝛾𝛾𝑑𝑑)|𝛿𝛿𝑑𝑑 − 𝒙𝒙𝑑𝑑
′𝜷𝜷| ≤ |𝛿𝛿𝑑𝑑 − 𝒙𝒙𝑑𝑑

′𝜷𝜷|, 

thus, it will be less biased than the synthetic regression estimator based on the same vector of 
coefficients 𝜷𝜷 while 𝛾𝛾𝑑𝑑 > 0.  

For an unsampled area; i.e., with sample size 𝑛𝑛𝑑𝑑 = 0, the variance of the direct estimator 𝜓𝜓𝑑𝑑  
would tend to infinity and 𝛾𝛾𝑑𝑑  would tend to zero. Assuming the limit value 𝛾𝛾𝑑𝑑 = 0, the synthetic 
regression estimator is obtained.  

𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹 = 𝒙𝒙𝑑𝑑′𝜷𝜷� . 

Under normality of 𝑢𝑢𝑑𝑑  and 𝑒𝑒𝑑𝑑, Prasad and Rao (1990) obtained a second-order                  
approximation (i.e., with error 𝑜𝑜(𝐷𝐷−1) when the number of areas 𝐷𝐷 is large) for the MSE                                         
of the FH estimator, expressed as  

MSE(𝛿̂𝛿𝑑𝑑𝐹𝐹𝐹𝐹) = 𝑔𝑔𝑑𝑑1(𝜎𝜎𝑢𝑢2) + 𝑔𝑔𝑑𝑑2(𝜎𝜎𝑢𝑢2) + 𝑔𝑔𝑑𝑑3(𝜎𝜎𝑢𝑢2), 
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where  

𝑔𝑔1𝑑𝑑(𝜎𝜎𝑢𝑢2) = 𝛾𝛾𝑑𝑑𝜓𝜓𝑑𝑑 , 

𝑔𝑔2𝑑𝑑(𝜎𝜎𝑢𝑢2) = (1 − 𝛾𝛾𝑑𝑑)2𝒙𝒙𝑑𝑑′ ��𝛾𝛾𝑑𝑑

𝐷𝐷

𝑑𝑑=1

𝒙𝒙𝑑𝑑𝒙𝒙𝑑𝑑′�

−1

𝒙𝒙𝑑𝑑 , 

𝑔𝑔3𝑑𝑑(𝜎𝜎𝑢𝑢2) = (1 − 𝛾𝛾𝑑𝑑)2(𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑2)−1var(𝜎𝜎�𝑢𝑢2). 

Here, var(𝜎𝜎�𝑢𝑢2) is the asymptotic variance of the estimator 𝜎𝜎�𝑢𝑢2 of 𝜎𝜎𝑢𝑢2, which depends on the 
estimation method used, 𝑔𝑔1𝑑𝑑(𝜎𝜎𝑢𝑢2) is the error due to the prediction of the random effect of the area 𝑢𝑢𝑑𝑑, 
of the order of 𝑂𝑂(1) when 𝐷𝐷 grows (i.e. does not tend to zero), 𝑔𝑔2𝑑𝑑(𝜎𝜎𝑢𝑢2) is the error due to the estimation 
of the vector of regression coefficients 𝜷𝜷 and 𝑔𝑔3𝑑𝑑(𝜎𝜎𝑢𝑢2) is the error due to the estimation of the variance 
𝜎𝜎𝑢𝑢2, where the last two terms tend to zero when 𝐷𝐷 grows with order 𝑂𝑂(𝐷𝐷−1); i.e. at the same rate as 
𝐷𝐷−1. This means that 𝑔𝑔2𝑑𝑑(𝜎𝜎𝑢𝑢2) and 𝑔𝑔3𝑑𝑑(𝜎𝜎𝑢𝑢2) disappear for a large enough 𝐷𝐷, while 𝑔𝑔1𝑑𝑑(𝜎𝜎𝑢𝑢2) does not 
disappear, but for moderate 𝐷𝐷 all three terms must be taken into account to avoid underestimation of 
the MSE.  

If 𝜎𝜎�𝑢𝑢2 is the REML estimator, the asymptotic variance is obtained as the inverse of Fisher's 
information ℐ(𝜎𝜎𝑢𝑢2), and is expressed as  

 var(𝜎𝜎�𝑢𝑢2) = ℐ−1(𝜎𝜎𝑢𝑢2) = 2 ��(
𝐷𝐷

𝑑𝑑=1

𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑)−2�

−1

. (25) 

In this case, 𝑔𝑔𝑑𝑑2(𝜎𝜎�𝑢𝑢2) and 𝑔𝑔𝑑𝑑3(𝜎𝜎�𝑢𝑢2) are respective estimators of 𝑔𝑔2𝑑𝑑(𝜎𝜎𝑢𝑢2) and 𝑔𝑔3𝑑𝑑(𝜎𝜎𝑢𝑢2) unbiased 
second-order estimators. This means that its bias is 𝑜𝑜(𝐷𝐷−1), i.e., it tends to zero faster than 𝐷𝐷−1 when 
𝐷𝐷 grows. However, 𝑔𝑔𝑑𝑑1(𝜎𝜎�𝑢𝑢2) has a non-negligible bias as an estimator of 𝑔𝑔𝑑𝑑1(𝜎𝜎𝑢𝑢2) which turns out to be 
equal to −𝑔𝑔3𝑑𝑑(𝜎𝜎𝑢𝑢2) + 𝑜𝑜(𝐷𝐷−1). Therefore, to correct for the bias of 𝑔𝑔1𝑑𝑑(𝜎𝜎�𝑢𝑢2), we must aggregate twice 
𝑔𝑔3𝑑𝑑(𝜎𝜎�𝑢𝑢2). Thus, an unbiased second-order MSE estimator of the FH estimator, known here as the 
Prasad-Rao estimator, is then expressed as  

mse𝑃𝑃𝑃𝑃(𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹) = 𝑔𝑔𝑑𝑑1(𝜎𝜎�𝑢𝑢2) + 𝑔𝑔𝑑𝑑2(𝜎𝜎�𝑢𝑢2) + 2𝑔𝑔𝑑𝑑3(𝜎𝜎�𝑢𝑢2). 

If 𝜎𝜎�𝑢𝑢2 is the ML estimator, its asymptotic variance is the same as for the REML estimator,              
given in (25). However, this estimator has a bias that is expressed as  

𝑏𝑏(𝜎𝜎𝑢𝑢2) = −{2ℐ(𝜎𝜎𝑢𝑢2)}−1traza ���(
𝐷𝐷

𝑑𝑑=1

𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑)−1𝒙𝒙𝑑𝑑𝒙𝒙𝑑𝑑′�

−1

�(
𝐷𝐷

𝑑𝑑=1

𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑)−2𝒙𝒙𝑑𝑑𝒙𝒙𝑑𝑑′�. 

In this case, the bias of the ML estimator adds a term to the bias of 𝑔𝑔𝑑𝑑1(𝜎𝜎�𝑢𝑢2) as the estimator of 
𝑔𝑔𝑑𝑑1(𝜎𝜎𝑢𝑢2). This bias is equal to 𝑏𝑏(𝜎𝜎𝑢𝑢2)𝛻𝛻𝑔𝑔1𝑑𝑑(𝜎𝜎𝑢𝑢2) − 𝑔𝑔3𝑑𝑑(𝜎𝜎𝑢𝑢2), where  

𝛻𝛻𝑔𝑔1𝑑𝑑(𝜎𝜎𝑢𝑢2) = (1 − 𝛾𝛾𝑑𝑑)2. 

Since 𝑏𝑏(𝜎𝜎�𝑢𝑢2)𝛻𝛻𝑔𝑔1𝑑𝑑(𝜎𝜎�𝑢𝑢2) is an unbiased second-order estimator of 𝑏𝑏(𝜎𝜎𝑢𝑢2)𝛻𝛻𝑔𝑔1𝑑𝑑(𝜎𝜎𝑢𝑢2), we can correct 
for the bias of 𝑔𝑔1𝑑𝑑(𝜎𝜎�𝑢𝑢2) by subtracting this term. In this way, we obtain the following unbiased second-
order MSE estimator of the FH estimator,  

 mse𝑃𝑃𝑃𝑃(𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹) = 𝑔𝑔𝑑𝑑1(𝜎𝜎�𝑢𝑢2) − 𝑏𝑏(𝜎𝜎�𝑢𝑢2)𝛻𝛻𝑔𝑔1𝑑𝑑(𝜎𝜎�𝑢𝑢2) + 𝑔𝑔𝑑𝑑2(𝜎𝜎�𝑢𝑢2) + 2𝑔𝑔𝑑𝑑3(𝜎𝜎�𝑢𝑢2). (26) 

If 𝜎𝜎�𝑢𝑢2 is the estimator obtained by the moment-based FH method, the second-order unbiased 
estimator of the MSE has the same form as (26), but the bias of the FH estimator of 𝜎𝜎𝑢𝑢2 and the 
asymptotic variance change, and are expressed as  
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 var(𝜎𝜎�𝑢𝑢2) = 2𝐷𝐷 ��(
𝐷𝐷

𝑑𝑑=1

𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑)−1�

−2

, (27) 

𝑏𝑏(𝜎𝜎𝑢𝑢2) =
2[𝐷𝐷∑ (𝐷𝐷

𝑑𝑑=1 𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑)−2 − {∑ (𝐷𝐷
𝑑𝑑=1 𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑)−1}2]

{∑ (𝐷𝐷
𝑑𝑑=1 𝜎𝜎𝑢𝑢2 + 𝜓𝜓𝑑𝑑)−1}3 . 

When estimating the FGT indicator of order 𝛼𝛼, 𝛿𝛿𝑑𝑑 = 𝐹𝐹𝛼𝛼𝛼𝛼, using the FH model, auxiliary variables 
𝒙𝒙𝑑𝑑  must be found to verify the model  

 
𝐹𝐹𝛼𝛼𝛼𝛼 = 𝒙𝒙𝑑𝑑′𝜷𝜷 + 𝑢𝑢𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷, 

 
(28) 

and it is assumed that the direct estimator 𝐹𝐹�𝛼𝛼𝛼𝛼𝐷𝐷𝐷𝐷𝐷𝐷  of 𝐹𝐹𝛼𝛼𝛼𝛼  satisfies  

 
𝐹𝐹�𝛼𝛼𝛼𝛼𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐹𝐹𝛼𝛼𝛼𝛼 + 𝑒𝑒𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷. 

 
(29) 

The linear mixed model obtained by combining (28) and (29) is expressed as  

 𝐹𝐹�𝛼𝛼𝛼𝛼𝐷𝐷𝐷𝐷𝐷𝐷 = 𝒙𝒙𝑑𝑑′𝜷𝜷 + 𝑢𝑢𝑑𝑑 + 𝑒𝑒𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷. (30) 

Fitting this model, the BLUP of 𝐹𝐹𝛼𝛼𝛼𝛼 = 𝒙𝒙𝑑𝑑′𝜷𝜷 + 𝑢𝑢𝑑𝑑  would be  

 𝐹𝐹�𝛼𝛼𝛼𝛼𝐹𝐹𝐹𝐹 = 𝒙𝒙𝑑𝑑′𝜷𝜷� + 𝑢𝑢�𝑑𝑑 , (31) 

where, in this case, 𝑢𝑢�𝑑𝑑 = 𝛾𝛾𝑑𝑑(𝐹𝐹�𝛼𝛼𝛼𝛼𝐷𝐷𝐷𝐷𝐷𝐷 − 𝒙𝒙𝑑𝑑′𝜷𝜷�) is the BLUP of 𝑢𝑢𝑑𝑑  and 𝜷𝜷� it is calculated as follows:  

𝜷𝜷� = ��𝛾𝛾𝑑𝑑

𝐷𝐷

𝑑𝑑=1

𝒙𝒙𝑑𝑑𝒙𝒙𝑑𝑑′�

−1

� 𝛾𝛾𝑑𝑑

𝐷𝐷

𝑑𝑑=1

𝒙𝒙𝑑𝑑𝐹𝐹�𝛼𝛼𝛼𝛼𝐷𝐷𝐷𝐷𝐷𝐷 . 

The final FH estimator of 𝐹𝐹𝛼𝛼𝛼𝛼  is obtained by simply replacing the variance 𝜎𝜎𝑢𝑢2 by a consistent 
estimator 𝜎𝜎�𝑢𝑢2 in the BLUP (31).  

The characteristics of the FH estimator can be summarised as follows:   

Target indicators: general parameters.   

Data requirements:  

• Aggregate data (e.g., population means) of the 𝑝𝑝 auxiliary variables considered in the areas, 
𝒙𝒙𝑑𝑑, 𝑑𝑑 = 1, … ,𝐷𝐷.  

Advantages:  

• It usually improves the efficiency of the direct estimator.  

• The considered regression model incorporates unexplained heterogeneity between areas.  

• It is a composite estimator that automatically borrows information from the remaining areas 
(giving greater weight to the synthetic regression estimator) where required (when the direct 
estimator has greater variance, or smaller sample size). It tends to the direct estimator when 
the size of the area grows (as 𝜓𝜓𝑑𝑑  becomes small).  

• If, for an area 𝑑𝑑, the weight given to the direct estimator is strictly positive (𝛾𝛾𝑑𝑑 > 0), the 
sampling weights 𝑤𝑤𝑑𝑑𝑑𝑑  are used through the direct estimator 𝛿𝛿𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷; i.e., the sample design is 
taken into account. Consequently, it is consistent under the design (as is the direct estimator). 
This means that it will be less affected by informative designs (designs with selection 
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probabilities for individuals depending on the variable of interest), by considering that the 
sampling weights are the true ones.  

• Because aggregate data is used, the FH estimator is not overly affected by isolated outliers (in 
this case direct atypical estimators for an area).  

• By using only aggregated auxiliary information, it avoids the confidentiality problems of 
microdata obtained from a census or administrative record.  

• For linear direct estimators, the Central Limit Theorem is applied for areas with sufficient 
sample size. Thus, the model will always have a minimum goodness of fit for areas of sufficient 
sample size.  

• It can be estimated in unsampled areas. 

• The Prasad-Rao estimator of the MSE is stable (or efficient) and is unbiased under the design 
when averaged over many areas.  

Disadvantages:  

• The estimators are based on a model; thus, it is necessary to analyse the model (e.g., by means 
of the residuals). For non-linear parameters, we can have linearity problems.  

• The sampling variances of the direct estimators 𝜓𝜓𝑑𝑑  are assumed to be known, although in 
practice it is necessary to estimate them, which leads to the same problem of lack of data in 
an area. Incorporating the estimation error of these variances in the MSE of the FH estimator 
is not automatic and often the estimated MSE does not incorporate this error.  

• The number of observations used to fit the model is the number of areas sampled, which is 
usually much smaller than the total sample size 𝑛𝑛 used to fit individual-level models. Thus, the 
model parameters are estimated with lower efficiency and improvements in efficiency 
compared with the direct estimators will be lower than with individual-level models (this 
efficiency increases with the number of areas). In our applications we have obtained very small 
gains over the direct estimator.  

• When estimating several indicators that depend on a common variable (e.g., 𝐹𝐹𝛼𝛼𝛼𝛼  for different 
values of 𝛼𝛼), as opposed to methods based on unit-level models, modelling, and searching of 
useful auxiliary variables is required for each of the indicators separately.  

• The MSE estimator under the Prasad-Rao model is correct under the model with             
normality of 𝑢𝑢𝑑𝑑  and 𝑒𝑒𝑑𝑑, and is not unbiased under the design for the MSE under the               
design for a particular area.  

• Once the model has been fitted at the area level, the estimators 𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹  cannot be disaggregated 
to subdomains or subareas within areas unless a new model is found that is suitable for that 
new level or, alternatively, a multilevel random effects model is fitted.  

• They require refitting to verify the benchmarking property: that the sum of the estimated 
totals in the areas of a larger region matches the direct estimator for that area.  

Example 5.  FH estimators of poverty incidence, with R. Continuing with the previous 
examples, we demonstrate how to obtain FH estimators of poverty incidence in R for the provinces. 
Firstly, to check whether the hypothesis of normality of the model is verified, we can analyse graphically 
the distribution of the direct estimators of poverty incidence by means of the histogram: 

hist(povinc.dir,prob=TRUE,main="",xlab="HT estimators pov. incidence") 
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The shape of this histogram (not included for purposes of conciseness) is somewhat asymmetric 
but is not too distant from a normal density, which is to be expected since the Central Limit Theorem is 
applied to the direct estimators of the areas.  

Next, we load the datasets with the population sizes of the provinces and by nationality, age, and 
employment status groups (some were already loaded in the previous examples):  

data(sizeprov) 
data(sizeprovnat) 
data(sizeprovage) 
data(sizeprovedu) 
data(sizeprovlab) 
 

We use these population sizes to calculate the proportions of individuals in each category within 
each province. These will be our explanatory variables in a Fay-Herriot model:  
 

Nd<-sizeprov[,3] 
Ndnat<-as.matrix(sizeprovnat[,-c(1,2)]) 
Ndage<-as.matrix(sizeprovage[,-c(1,2)]) 
Ndedu<-as.matrix(sizeprovedu[,-c(1,2)]) 
Ndlab<-as.matrix(sizeprovlab[,-c(1,2)]) 
 
Pdnat<-Ndnat/Nd 
Pdage<-Ndage/Nd 
Pdedu<-Ndedu/Nd 
Pdlab<-Ndlab/Nd 
 
# Design matrix for FH model 
X<-cbind(const=rep(1,D),nat1=Pdnat[,1],Pdage[,3:5],Pdedu[,c(1,3)],Pdlab[,c(2,3)])  
 

We call on the function that calculates the FH estimators of poverty incidence for the provinces, 
using the direct HT estimators obtained in Example 1 and their corresponding sampling variances:  
povinc.FH.res<-eblupFH(povinc.dir~X-1,vardir=povinc.dir.res$SD^2) 
povinc.FH<-povinc.FH.res$eblup 
 

Using the estimated regression coefficients obtained from fitting the Fay-Herriot model, we can 
also calculate synthetic regression estimators based on the model at the area level:  

 

povinc.rsyn1<-X%*%povinc.FH.res$fit$estcoef[,1] 
 

Although these estimators are based on the estimator of the regression coefficients obtained 
from the fitting of the Fay-Herriot model and not from the synthetic model, they are also synthetic 
estimators because they do not consider heterogeneity between areas that is not explained by the 
considered auxiliary variables. Moreover, the estimators of the regression coefficients obtained under 
both models, using the same auxiliary variables, are asymptotically equivalent. Thus, for a large number 
of areas, they will both be very similar.  

 
As the FH estimators are composite estimators between direct and synthetic regression 

estimators, we calculate the weights given to the direct estimators in the composite and show a 
descriptive summary of them:  

 
gammad<-povinc.FH.res$fit$refvar/(povinc.FH.res$fit$refvar+povinc.dir.res$SD^2) 
summary(gammad) 
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Result:  
  Min.  1st Qu.  Median   Mean   3rd Qu.  Max. 
0.4537   0.7182   0.8108   0.7906   0.8977   0.9477 
 

We see that, unlike the SSC estimators, in this case the weight given to the direct estimator does 
not equal one for any province, although it does assume values close to one for some provinces.  

We now graphically compare the FH estimates with the direct HT and synthetic RSYN1 estimates 
for each province. The provinces (on the axis) are arranged from smallest to largest sample size, and we 
indicate their sample sizes on the axis:  

o<-order(nd) 
k<-6 
M<-max(povinc.dir,povinc.FH,povinc.rsyn1) 
m<-min(povinc.dir,povinc.FH,povinc.rsyn1) 
plot(1:D,povinc.dir[o],type="n",ylim=c(m,M+(M-m)/k),xlab="Province",ylab="Estimator", 

 xaxt="n") 
points(1:D,povinc.dir[o],type="b",col=1,lty=1,pch=1,lwd=2) 
points(1:D,povinc.FH[o],type="b",col=4,lty=4,pch=4,lwd=2) 
points(1:D,povinc.rsyn1[o],type="b",col=3,lty=3,pch=3,lwd=2) 
axis(1, at=1:D, labels=nd[o]) 
legend(1,M+(M-m)/k,legend=c("DIR","FH","RSYN1"),ncol=3,col=c(1,4,3),lwd=rep(2,3), 
 lty=c(1,4,3),pch=c(1,4,3))  

 
Finally, we estimate the MSE of the FH estimators by calling on the mseFH()function, we 

calculate the estimated CVs and plot the MSEs together with the variances of the direct estimators:  
povinc.FH.mse.res<-mseFH(povinc.dir~X-1,vardir=povinc.dir.res$SD^2) 

 
povinc.FH.mse<-povinc.FH.mse.res$mse 
povinc.FH.cv<-100*sqrt(povinc.FH.mse)/povinc.FH 

 
M<-max(povinc.dir.var,povinc.FH.mse) 
m<-min(povinc.dir.var,povinc.FH.mse) 
plot(1:D,povinc.dir.cv[o],type="n",ylim=c(m,M+(M-m)/k),xlab="Province",ylab="CV",xaxt="n") 
points(1:D,povinc.dir.var[o],type="b",col=1,lty=1,pch=1,lwd=2) 
points(1:D,povinc.FH.mse[o],type="b",col=4,lty=4,pch=4,lwd=2) 
axis(1, at=1:D, labels=nd[o]) 
legend(1,M+(M-m)/k,legend=c("DIR", "FH"),ncol=3,col=c(1,4),lwd=rep(2,2),lty=c(1,4),pch=c(1,4))   
 

Once again, we can see in Figure 6 (left) that the synthetic regression estimators assume very 
similar values for all provinces, unlike the direct estimators, which vary more across provinces. The FH 
estimators are close to the direct estimators, but they also borrow information from the other provinces 
by means of synthetic estimators, especially for the provinces with smaller sample size (left-hand 
graph). Although in this example the considered auxiliary variables are not very powerful, figure 6 (right) 
indicates that the FH estimators are more efficient than the direct estimators. 

 
Finally, we will compare the estimated CVs for the HT, GREG, and FH estimators for the 5 

provinces with smaller sample sizes:  
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Figure 6 
FH, direct HT and RSYN1 estimates of poverty incidence for the provinces (left), and MSEs estimated from the FH 

and direct HT estimators (right) 
(In proportions) 

 
Source: Prepared by the author. 

 
compardirFH<-data.frame(povinc.dir.cv,povinc.greg.cv,povinc.FH.cv) 
 
selprov<-o[1:5] 
compardirFH[selprov,] 
Results:  

povinc.dir.CV povinc.greg.cv povinc.FH.cv 
42      99.97815       94.72703     49.34572 
5       46.35946       42.04802     33.74811 
40      25.33449       21.77035     21.64444 
34      23.80085       19.02477     18.27171 
44      24.57017       16.86049     20.47468 
 

We can see the reduction in CVs achieved by the FH estimators compared to the HT direct 
estimators. They are also more efficient than the GREG estimators for the four provinces with smaller 
sample sizes, and these improvements are significant for the two provinces with smaller sample sizes.  

B. Model-based EBLUP with nested errors 

The model with nested errors was proposed by Battese, Harter and Fuller (1977) to estimate corn and 
soybean production at a county level in the U.S.  This model linearly relates the values of a variable of 
interest 𝑌𝑌𝑑𝑑𝑑𝑑  for the individual 𝑖𝑖 within the area 𝑑𝑑, with the values of 𝑝𝑝 auxiliary variables for that same 
individual, as follows:  

 𝑌𝑌𝑑𝑑𝑑𝑑 = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷 + 𝑢𝑢𝑑𝑑 + 𝑒𝑒𝑑𝑑𝑑𝑑 ,  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷, (32) 

where 𝜷𝜷 is the vector of coefficients of the auxiliary variables, common to all areas, 𝑢𝑢𝑑𝑑  is the random 
effect of the area and 𝑒𝑒𝑑𝑑𝑑𝑑  is the error at individual level. Random effects represent the unexplained 
heterogeneity of the values 𝑌𝑌𝑑𝑑𝑑𝑑  across the areas. Random effects are considered independent of errors, 
with 𝑢𝑢𝑑𝑑 ∼ (𝑖𝑖𝑖𝑖𝑖𝑖 0,𝜎𝜎𝑢𝑢2) and 𝑒𝑒𝑑𝑑𝑑𝑑 ∼ (𝑖𝑖𝑖𝑖𝑖𝑖 0,𝜎𝜎𝑒𝑒2𝑘𝑘𝑑𝑑𝑑𝑑2 ), being 𝑘𝑘𝑑𝑑𝑑𝑑  known constants representing possible 
heteroscedasticity.  
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Note that the mean of the area 𝑑𝑑 can be decomposed into the sum of the values observed in the 
sample and those not sampled, as follows:  

𝑌̄𝑌𝑑𝑑 = 𝑁𝑁𝑑𝑑−1 �� 𝑌𝑌𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

+ �𝑌𝑌𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑟𝑟𝑑𝑑

�. 

It is not necessary to predict the values observed in the sample as they are given to us. The BLUP 
of 𝑌̄𝑌𝑑𝑑  under the model with nested errors (32) is obtained by simply fitting the model to the sampling 
data and predicting the values of the out-of-sample variables 𝑌𝑌𝑑𝑑𝑑𝑑  from the area 𝑑𝑑, i.e.  

 𝑌̄𝑌�𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁𝑑𝑑−1 �� 𝑌𝑌𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

+ �𝑌𝑌�𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑖𝑖∈𝑟𝑟𝑑𝑑

�, (33) 

where, assuming the weighted least squares estimator 𝜷𝜷� from 𝜷𝜷 under the model (32), the predicted 
values are  

𝑌𝑌�𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷� + 𝑢𝑢�𝑑𝑑 , 
𝑢𝑢�𝑑𝑑 = 𝛾𝛾𝑑𝑑(𝑦̄𝑦𝑑𝑑𝑑𝑑 − 𝒙̄𝒙𝑑𝑑𝑑𝑑′𝜷𝜷�), 𝛾𝛾𝑑𝑑 = 𝜎𝜎𝑢𝑢2/(𝜎𝜎𝑢𝑢2 + 𝜎𝜎𝑒𝑒2/𝑎𝑎𝑑𝑑⋅), 

where 𝑦̄𝑦𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑑𝑑⋅−1 ∑ 𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑 𝑌𝑌𝑑𝑑𝑑𝑑  and 𝒙̄𝒙𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑑𝑑⋅−1 ∑ 𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑 𝒙𝒙𝑑𝑑𝑑𝑑  are the weighted sample                                    
means of the response variable and the auxiliary variables, respectively, with weights 𝑎𝑎𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑑𝑑𝑑𝑑−2, and 
where 𝑎𝑎𝑑𝑑⋅ = ∑ 𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖∈𝑠𝑠𝑑𝑑 . Once again 𝑢𝑢�𝑑𝑑  is the BLUP of 𝑢𝑢𝑑𝑑  and the predicted values 𝑌𝑌�𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  are the BLUPs 
of the variables 𝑌𝑌𝑑𝑑𝑑𝑑, 𝑖𝑖 ∈ 𝑟𝑟𝑑𝑑, under the model (32).  

We construct the vector of response variables for the area 𝑑𝑑, 𝒚𝒚𝑑𝑑 = (𝑌𝑌𝑑𝑑1, … ,𝑌𝑌𝑑𝑑𝑁𝑁𝑑𝑑)′ and the 
corresponding matrix of auxiliary variables, 𝑿𝑿𝑑𝑑 = (𝒙𝒙𝑑𝑑1, … ,𝒙𝒙𝑑𝑑𝑁𝑁𝑑𝑑)′. Under the nested error model (32), 
𝒚𝒚𝑑𝑑 ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (𝑿𝑿𝑑𝑑𝜷𝜷,𝑽𝑽𝑑𝑑), 𝑑𝑑 = 1, … ,𝐷𝐷, where  

𝑽𝑽𝑑𝑑 = 𝜎𝜎𝑢𝑢2𝟏𝟏𝑁𝑁𝑑𝑑𝟏𝟏𝑁𝑁𝑑𝑑
′ + 𝜎𝜎𝑒𝑒2𝑨𝑨𝑑𝑑 , 

where 𝑨𝑨𝑑𝑑 = diag(𝑘𝑘𝑑𝑑𝑑𝑑2 ; 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑). We now decompose the vector 𝒚𝒚𝑑𝑑  of the area 𝑑𝑑 into the subvectors 
for the in-sample units and for the out-of-sample units as follows: 𝒚𝒚𝑑𝑑 = (𝒚𝒚𝑑𝑑𝑑𝑑′,𝒚𝒚𝑑𝑑𝑑𝑑′)′, and, similarly, the 
matrices 𝑿𝑿𝑑𝑑  and 𝑽𝑽𝑑𝑑,  

𝑿𝑿𝑑𝑑 = �𝑿𝑿𝑑𝑑𝑑𝑑𝑿𝑿𝑑𝑑𝑑𝑑
� ,  𝑽𝑽𝑑𝑑 = � 𝑽𝑽𝑑𝑑𝑑𝑑 𝑽𝑽𝑑𝑑𝑑𝑑𝑑𝑑

𝑽𝑽𝑑𝑑𝑑𝑑𝑑𝑑 𝑽𝑽𝑑𝑑𝑑𝑑
�. 

With this notation, the weighted least squares estimator of 𝜷𝜷 is expressed as  

 𝜷𝜷� = ��𝑿𝑿𝑑𝑑𝑑𝑑

𝐷𝐷

𝑑𝑑=1

𝑽𝑽𝑑𝑑𝑑𝑑−1𝑿𝑿𝑑𝑑𝑑𝑑
′�

−1

�𝑿𝑿𝑑𝑑𝑑𝑑

𝐷𝐷

𝑑𝑑=1

𝑽𝑽𝑑𝑑𝑑𝑑−1𝒚𝒚𝑑𝑑𝑑𝑑. (34) 

For areas with negligible sampling fraction, i.e., where 𝑛𝑛𝑑𝑑/𝑁𝑁𝑑𝑑 ≈ 0, the BLUP of the mean 𝑌̄𝑌𝑑𝑑  can 
be written as follows:  

𝑌̄𝑌�𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≈ 𝛾𝛾𝑑𝑑�𝑦̄𝑦𝑑𝑑𝑑𝑑 + (𝑿̄𝑿𝑑𝑑 − 𝒙̄𝒙𝑑𝑑𝑑𝑑)′𝜷𝜷�� + (1 − 𝛾𝛾𝑑𝑑)𝑿̄𝑿𝑑𝑑
′𝜷𝜷�. 

As 𝛾𝛾𝑑𝑑 ∈ (0,1), he BLUP is a weighted mean between the estimator 𝑦̄𝑦𝑑𝑑𝑑𝑑 + (𝑿̄𝑿𝑑𝑑 − 𝒙̄𝒙𝑑𝑑𝑑𝑑)′𝜷𝜷�, known 
as the survey regression estimator and the synthetic regression estimator, 𝑿̄𝑿𝑑𝑑

′𝜷𝜷�. The survey regression 
estimator is obtained by adapting the same model (32) but taking the area effects 𝑢𝑢𝑑𝑑  as fixed rather 
than random. Note, also, that this weighted mean is similar to that obtained using the FH estimator 
given in (24), but where the survey-regression estimator 𝑦̄𝑦𝑑𝑑𝑑𝑑 + (𝑿̄𝑿𝑑𝑑 − 𝒙̄𝒙𝑑𝑑𝑑𝑑)′𝜷𝜷� assumes the role of direct 
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estimator. Indeed, this estimator can be considered as direct, since its variance is 𝑂𝑂(𝑛𝑛𝑑𝑑−1); i.e., its 
variance increases when the sample size of the area 𝑛𝑛𝑑𝑑  becomes small.  

In order to interpret this estimator, let us consider, for simplicity, a homoscedastic model; i.e., 
with 𝑘𝑘𝑑𝑑𝑑𝑑 = 1 for all 𝑖𝑖 and 𝑑𝑑. In this case, you have 𝛾𝛾𝑑𝑑 = 𝜎𝜎𝑢𝑢2/(𝜎𝜎𝑢𝑢2 + 𝜎𝜎𝑒𝑒2/𝑛𝑛𝑑𝑑). For an area with a small 
sample size 𝑛𝑛𝑑𝑑  , 𝛾𝛾𝑑𝑑  is close to zero and the BLUP is close to the synthetic regression estimator, which 
borrows information from the other areas. However, for an area with a large sample size 𝑛𝑛𝑑𝑑  , 𝛾𝛾𝑑𝑑  is close 
to one and BLUP is close to the survey regression estimator. Moreover, 𝛾𝛾𝑑𝑑  also depends on 
heterogeneity between areas as measured by 𝜎𝜎𝑢𝑢2. If the areas are very heterogeneous (𝜎𝜎𝑢𝑢2 is large 
compared to 𝜎𝜎𝑒𝑒2/𝑛𝑛𝑑𝑑), or equivalently, if the considered auxiliary variables do not explain much of the 
variability, then 𝛾𝛾𝑑𝑑  is close to one and more weight is given to the survey regression estimator, which is 
similar to a direct estimator. Otherwise, if the areas are homogeneous or, in other words, if the auxiliary 
variables are strong predictors, then more weight is given to the synthetic estimator obtained by means 
of regression with these auxiliary variables.  

Again, the BLUP given in (33) depends on the true values of the variance components                               
of the model (32), 𝜽𝜽 = (𝜎𝜎𝑢𝑢2,𝜎𝜎𝑒𝑒2)′. Substituting the true 𝜽𝜽 for a consistent estimator 𝜽𝜽� = (𝜎𝜎�𝑢𝑢2,𝜎𝜎�𝑒𝑒2)′                  
in the BLUP (33), we obtain the EBLUP, expressed as  

 𝑌̄𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑑𝑑−1 �� 𝑌𝑌𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

+ �𝑌𝑌�𝑑𝑑𝑑𝑑𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿

𝑖𝑖∈𝑟𝑟𝑑𝑑

�, (35) 

where, if 𝜷𝜷�  is the result of substituting 𝜽𝜽 by the estimator 𝜽𝜽� in 𝜷𝜷� given in (34), the                                         
predicted values are now  

𝑌𝑌�𝑑𝑑𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷� + 𝑢𝑢�𝑑𝑑 , 
𝑢𝑢�𝑑𝑑 = 𝛾𝛾�𝑑𝑑(𝑦̄𝑦𝑑𝑑𝑑𝑑 − 𝒙̄𝒙𝑑𝑑𝑑𝑑′𝜷𝜷�), 𝛾𝛾�𝑑𝑑 = 𝜎𝜎�𝑢𝑢2/(𝜎𝜎�𝑢𝑢2 + 𝜎𝜎�𝑒𝑒2/𝑎𝑎𝑑𝑑⋅), 

The BLUP is unbiased under the model (32) and is optimal, in that it minimises the MSE, between 
the linear in-sample and unbiased estimators. By substituting 𝜽𝜽 for the estimator 𝜽𝜽�, the EBLUP remains 
unbiased under the model (32), under certain conditions for the estimator 𝜽𝜽�. The usual estimation 
methods, namely ML, REML and the Henderson III method, satisfy these conditions. However, neither 
the BLUP nor the EBLUP are unbiased under the sample design. In fact, they do not take account of the 
sample design and are therefore normally designed for simple random sampling (SRS). In any case, 
EBLUPs give a marked improvement in efficiency over direct estimators and even over FH estimators, 
since they use much more detailed information and in a more efficient way (without reducing the data 
by half). Under sample designs with unequal probabilities, they may have a non-negligible bias under 
the design. You and Rao (2002) proposed a variation called pseudo EBLUP that includes the sampling 
weights and is consistent under the design when the area size 𝑛𝑛𝑑𝑑  grows.  

For an unsampled area, i.e., with sample size 𝑛𝑛𝑑𝑑 = 0, assuming 𝛾𝛾𝑑𝑑 = 0, we obtain the synthetic 
regression estimator 𝑿̄𝑿𝑑𝑑

′𝜷𝜷�.  

Under SRS and assuming 𝑘𝑘𝑑𝑑𝑑𝑑 = 1, for all 𝑖𝑖 and 𝑑𝑑, given that the survey regression estimator is 
approximately unbiased under the design, the bias under the BLUP design when.                                                      
𝑛𝑛𝑑𝑑/𝑁𝑁𝑑𝑑 ≈ 0 is −(1 − 𝛾𝛾𝑑𝑑)(𝑌̄𝑌𝑑𝑑 − 𝑿̄𝑿𝑑𝑑

′𝜷𝜷). Therefore, the relative absolute bias (RAB).                                              
under the design is equal to  

 (1 − 𝛾𝛾𝑑𝑑) �
𝑌̄𝑌𝑑𝑑 − 𝑿̄𝑿𝑑𝑑

′𝜷𝜷
𝑌̄𝑌𝑑𝑑

� ≤ �
𝑌̄𝑌𝑑𝑑 − 𝑿̄𝑿𝑑𝑑

′𝜷𝜷
𝑌̄𝑌𝑑𝑑

�, 

i.e., it is smaller than the relative absolute bias under the design of the synthetic regression estimator 
𝑿̄𝑿𝑑𝑑

′𝜷𝜷 for the same vector of coefficients 𝜷𝜷, |(𝑌̄𝑌𝑑𝑑 − 𝑿̄𝑿𝑑𝑑
′𝜷𝜷)/𝑌̄𝑌𝑑𝑑|, while 𝛾𝛾𝑑𝑑 > 0. If we set an upper limit 𝐵𝐵 
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for the relative absolute bias (e.g., 𝐵𝐵 = 0.20 or 𝐵𝐵 = 0.10), if this limit 𝐵𝐵 is exceeded for any of the areas, 
we can replace the relative absolute bias of the synthetic estimator by a constant quantity for each area, 
such as the maximum, i.e., we consider that  

𝑀𝑀 = max
1≤𝑑𝑑≤𝐷𝐷

�
𝑌̄𝑌𝑑𝑑 − 𝑿̄𝑿𝑑𝑑

′𝜷𝜷
𝑌̄𝑌𝑑𝑑

�. 

The quantity (1 − 𝛾𝛾𝑑𝑑)𝑀𝑀 decreases monotonically with the sample size of the area 𝑛𝑛𝑑𝑑, by means 
of 𝛾𝛾𝑑𝑑. We can find the sample size 𝑛𝑛𝑑𝑑∗  starting from which (1 − 𝛾𝛾𝑑𝑑)𝑀𝑀 exceeds 𝐵𝐵. If 𝑀𝑀 > 𝐵𝐵 (otherwise 
the SAR does not exceed 𝐵𝐵 for any province), the resulting sample size is  

𝑛𝑛𝑑𝑑∗ =
𝜎𝜎𝑒𝑒2

𝜎𝜎𝑢𝑢2
�
𝑀𝑀
𝐵𝐵
− 1�. 

Thus, for areas with sample size 𝑛𝑛𝑑𝑑 < 𝑛𝑛𝑑𝑑∗ , the relative absolute bias could exceed the upper         
limit 𝐵𝐵 and we may decide not to generate estimates for those areas. However, 𝑛𝑛𝑑𝑑∗  depends on certain 
unknown quantities. Therefore, in practice, we estimate these unknown quantities and obtain an 
estimated value of 𝑛𝑛𝑑𝑑∗ . An estimator would be  

𝑛𝑛�𝑑𝑑∗ =
𝜎𝜎�𝑒𝑒2

𝜎𝜎�𝑢𝑢2
�
𝑀𝑀�
𝐵𝐵
− 1�, 

where  

𝑀𝑀� = max
1≤𝑑𝑑≤𝐷𝐷

�
𝑌̄𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑿̄𝑿𝑑𝑑

′𝜷𝜷�

𝑌̄𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
�, 

assuming that 𝑀𝑀� > 𝐵𝐵. 

The MSE of the EBLUP 𝑌̄𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 of 𝑌̄𝑌𝑑𝑑, as well as a second-order estimator of this MSE, can be 
approximated by using a suitable large analytical second-order formula for 𝐷𝐷 in much the same way as 
the Prasad-Rao formula described in the introduction for the FH estimator. Another option that does 
not require a large number of areas 𝐷𝐷, although computationally more expensive, is to turn to 
bootstrapping procedures. Here we give an overview of a parametric bootstrapping procedure for finite 
populations proposed by González-Manteiga et al. (2008), particularised here for the estimation of area 
means, 𝑌̄𝑌𝑑𝑑. The bootstrapping procedure is as follows:  

1. Fit the model (32) to the sampling data 𝒚𝒚𝑠𝑠 = (𝒚𝒚1𝑠𝑠′, … ,𝒚𝒚𝐷𝐷𝐷𝐷′)′ and obtain the estimators of the 
parameters of the model 𝜷𝜷�, 𝜎𝜎�𝑢𝑢2 and 𝜎𝜎�𝑒𝑒2.  

2. Generate the effects on the areas as follows: 𝑢𝑢𝑑𝑑
∗(𝑏𝑏) ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (0,𝜎𝜎�𝑢𝑢2), 𝑑𝑑 = 1, … ,𝐷𝐷.  

3. Independently of the effects on the areas 𝑢𝑢𝑑𝑑
∗(𝑏𝑏), generate bootstrap errors for the sample units 

in the area, 𝑒𝑒𝑑𝑑𝑑𝑑
∗(𝑏𝑏) ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (0,𝜎𝜎�𝑒𝑒2), 𝑖𝑖 ∈ 𝑠𝑠𝑑𝑑. Also generate the population mean values of the errors 

in the areas, 𝐸̄𝐸𝑑𝑑
∗(𝑏𝑏) ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (0,𝜎𝜎�𝑒𝑒2/𝑁𝑁𝑑𝑑), 𝑑𝑑 = 1, … ,𝐷𝐷.  

4. Calculate the true bootstrap mean values of the areas,  
𝑌̄𝑌𝑑𝑑
∗(𝑏𝑏) = 𝑿̄𝑿𝑑𝑑

′𝜷𝜷� + 𝑢𝑢𝑑𝑑
∗(𝑏𝑏) + 𝐸̄𝐸𝑑𝑑

∗(𝑏𝑏),  𝑑𝑑 = 1, … ,𝐷𝐷. 
Note that the computation of the mean 𝑌̄𝑌𝑑𝑑

∗(𝑏𝑏) does not require the individual values 𝒙𝒙𝑑𝑑𝑑𝑑, for each 
out-of-sample unit in the area 𝑖𝑖 ∈ 𝑟𝑟𝑑𝑑.  

5. Using the vectors of values of the auxiliary variables for the sampling units 𝒙𝒙𝑑𝑑𝑑𝑑, 𝑖𝑖 ∈ 𝑠𝑠𝑑𝑑, generate 
the response variables for the sampling units based on the model  

 𝑌𝑌𝑑𝑑𝑑𝑑
∗(𝑏𝑏) = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷� + 𝑢𝑢𝑑𝑑

∗(𝑏𝑏) + 𝑒𝑒𝑑𝑑𝑑𝑑
∗(𝑏𝑏),  𝑖𝑖 ∈ 𝑠𝑠𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷. (36) 
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6. For the original sample 𝑠𝑠 = 𝑠𝑠1 ∪ ⋯∪ 𝑠𝑠𝐷𝐷, let 𝒚𝒚𝑠𝑠
∗(𝑏𝑏) = ((𝒚𝒚1𝑠𝑠

∗(𝑏𝑏))′, … , (𝒚𝒚𝐷𝐷𝐷𝐷
∗(𝑏𝑏))′)′ be the bootstrap 

vector of values in the sample. Fit the model (32) to the bootstrap data 𝒚𝒚𝑠𝑠
∗(𝑏𝑏) and compute the 

bootstrap EBLUPs 𝑌̄𝑌�𝑑𝑑
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸∗(𝑏𝑏), 𝑑𝑑 = 1, … ,𝐷𝐷.  

7. Repeat steps 2) - 6) for 𝑏𝑏 = 1, … ,𝐵𝐵 and we obtain the true mean values 𝑌̄𝑌𝑑𝑑
∗(𝑏𝑏) and the 

corresponding EBLUPs 𝑌̄𝑌�𝑑𝑑
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸∗(𝑏𝑏) for the bootstrap replication 𝑏𝑏. The naive bootstrap 

estimators of the MSE of the EBLUPs 𝑌̄𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, obtained by means of the parametric 
bootstrapping are  

 
𝑚𝑚𝑚𝑚𝑒𝑒𝐵𝐵�𝑌̄𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� =

1
𝐵𝐵
��𝑌̄𝑌�𝑑𝑑

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸∗(𝑏𝑏) − 𝑌̄𝑌𝑑𝑑
∗(𝑏𝑏)�

2
𝐵𝐵

𝑏𝑏=1

,

𝑑𝑑 = 1, … ,𝐷𝐷. 
 

(37) 

The bootstrap estimator (37) is first-order unbiased rather than second-order, i.e., its bias does 
not decrease faster than 𝐷𝐷−1 when the number of areas 𝐷𝐷 grows. There are various bias corrections in 
the literature but they either produce estimators that can assume unwanted negative values or else they 
are strictly positive but not second-order unbiased. Besides, these corrections increase the variance of 
the MSE estimator. Thus, the naive bootstrap estimator that does not perform bias correction is an 
acceptable choice from among the non-analytical estimators.  
Summary of characteristics of the model-based EBLUP with nested errors:   

Target indicators: mean values/totals of the variable of interest.   

Data requirements:  

• Microdata from the 𝑝𝑝 considered auxiliary variables, from the same survey where the variable 
of interest is observed.  

• Area of interest obtained from the same survey where the variable of interest is observed.  

• Population mean values of the 𝑝𝑝 auxiliary variables considered in the areas, 𝑿̄𝑿𝑑𝑑, 𝑑𝑑 = 1, … ,𝐷𝐷.  

Advantages:  

• The number of observations used to fit the model is the total sample size 𝑛𝑛, much larger than 
the number of observations (equal to the number of areas) in the FH models. Thus, the model 
parameters are estimated more efficiently and the improvement in efficiency over the direct 
estimators will be greater than with FH models.  

• The considered regression model incorporates unexplained heterogeneity between areas.  

• It is a composite estimator, which automatically borrows information from the remaining 
areas (giving greater weight to the synthetic regression estimator) where required (when the 
sample size is small). It tends to the survey regression estimator when the area grows in size.  

• Unlike the FH model, no variance needs to be known.  

• The MSE estimator under the model is a stable estimator of the MSE under the design and is 
unbiased under the design when averaged across several areas.  

• Estimates can be disaggregated for any required subdomain or subarea within the areas, even 
at the individual level.  

• It can be estimated in unsampled areas. 
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Disadvantages:  

• The estimators are based on a model; thus, it is necessary to analyse the model (e.g., by means 
of the residuals).  

• It does not take the sample design into account. Therefore, it is not unbiased under                        
the design and is more suitable for simple random sampling. It will be affected by      
informative sample designs.  

• It is affected by isolated outlying observations or by a lack of normality.  

• Microdata is usually obtained from a census or administrative record, and there are often 
confidentiality issues that limit the use of this type of data.  

• The MSE estimator under the Prasad-Rao model is suitable under the model with normality 
and is not unbiased under the design for the MSE under the design for a specific area.  

• They require readjustment to verify the benchmarking property: that the sum of the 
estimated totals in the areas of a larger region matches the direct estimator for that area.  

Example 6.  EBLUPs based on the model with nested errors of poverty incidence, with R. Continuing 
with the previous examples, we demonstrate how to obtain in R the EBLUPs of poverty incidence based 
on a model with nested errors. In a predefined dataset in R, the values of the out-of-sample auxiliary 
variables are available for the five provinces with the smallest sample sizes. Using this data and the 
sample, we can calculate the population means of these variables for these provinces, but we do not 
have the true means for the other provinces. Therefore, we can only demonstrate the collection of the 
EBLUPs for those provinces, even though the model is fitted to the sample with the provinces.  

First of all, we load the dataset containing the values of the out-of-sample auxiliary variables for 
the selected provinces and we calculate the population means of these variables in the provinces. To do 
so, we use the in-sample values (incomedata dataset) and the out-of-sample values (Xoutsamp). 
Moreover, we include the provincial codes in the first column of the matrix of the mean values:  

 
data(Xoutsamp) 
<-length(selprov)             # Number of provinces selected 
p<-dim(Xoutsamp)[2]-1         # Number of auxiliary variables 
 
auxvar<-names(Xoutsamp)[-1] # Names of  aux. var. in Xoutsamp 
meanXpop<-matrix(0,nr=I,nc=p)  # Matrix with means of aux. var. 
Ni<-numeric(I)              # Population size of the provinces 
 
for (i in 1:I){              # Loop for selected provinces 
  d<-selprov[i] 
  Xsd<-incomedata[prov==d,auxvar]    # Aux. var. sampling values 
  Xrd<-Xoutsamp[Xoutsamp$domain==d,-1]  # Non-sample values  
  Ni[i]<-dim(Xrd)[1]+dim(Xsd)[1]# Population size of the prov. 
  for (k in 1:p){ 
    meanXpop[i,k]<-(sum(Xrd[,k])+sum(Xsd[,k]))/Ni[i] 
  } 
} 
Xmean<-data.frame(selprov,meanXpop) 
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We now call on the function that calculates the EBLUPs of the poverty incidence for the selected 
provinces, based on the model with nested errors adapted to the sample data (for all provinces). We 
save the estimates obtained in a vector: 

 
povinc.BHF.res<-eblupBHF(poor ~ age2+age3+age4+age5+nat1+educ1+educ3+labor1+labor2, 
 dom=prov,selectdom=selprov,meanxpop=Xmean,popnsize=sizeprov[,-1]) 
 
povinc.BHF<-numeric(D) 
povinc.BHF[selprov]<-povinc.BHF.res$eblup$eblup 
  

We check the results of the model fit with nested errors and compute the synthetic regression 
estimator based on the individual-level model:  

 
betaest<-povinc.BHF.res$fit$fixed  # Regression coefficients 
upred<-povinc.BHF.res$fit$random   # Predicted effects on prov. 
sigmae2est<-povinc.BHF.res$fit$errorvar  # Estimated var. of the error 
sigmau2est<-povinc.BHF.res$fit$refvar  # Estimated variance of the effects of the provinces 
 
povinc.rsyn2<-numeric(D) 
povinc.rsyn2[selprov]<-cbind(1,meanXpop)%*%betaest 
 

We analyse how much weight the EBLUP gives to the survey regression estimator:  
 
gammad.BHF<-sigmau2est/(sigmau2est+sigmae2est/nd) 
summary(gammad.BHF) 

Result:  

   Min.  1st Qu.  Median   Mean   3rd Qu.  Max. 
 0.3458  0.7743   0.8606   0.8352   0.9276   0.9741 
  

The closer the gammad.BHF result is to zero for an area, the more information is being borrowed 
from the synthetic regression estimator at individual level. In this case, there is one province for which 
a lot of information is being borrowed, given that the minimum value of gammad.BHF is relatively small.  

 
We now calculate the MSE estimators of the EBLUPs using the parametric bootstrap described 

above. To do so, we call on the pbmseBHF() function using B=200 bootstrap replications. This function 
also returns the EBLUPs and results of the fit exactly the same as the eblupBHF() function. 

 
povinc.mse.res<-pbmseBHF(poor~age3+age4+age5+nat1+educ1+educ3+labor1+labor2, 
dom=prov,selectdom=selprov,meanxpop=Xmean,popnsize=sizeprov[,-1],B=200) 
 

Finally, we compare the EBLUPs based on the model with nested errors with the direct                                
HT and FH estimators, plotting the point estimates obtained and their estimated MSEs for the five 
provinces selected:                                                                              : 
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Figure 7 
EBLUPs based on the model with nested errors of poverty incidence for the provinces together with direct HT  

and FH estimates (left), and estimated MSEs from the three estimators (right) 
(In proportions) 

  

  

 

 

 

 

 

 

 

 

 

 

Source: Prepared by the author. 

The R code used to generate the previous figure is as follows: 
 
M<-max(povinc.dir[selprov],povinc.FH[selprov],povinc.BHF[selprov]) 
m<-min(povinc.dir[selprov],povinc.FH[selprov],povinc.BHF[selprov]) 
plot(1:5,povinc.dir[selprov],type="n",ylim=c(m,M+(M-m)/k),xlab="Province",ylab="Estimator", 
 xaxt="n") 
points(1:5,povinc.dir[selprov],type="b",col=1,lty=1,pch=1,lwd=2) 
points(1:5,povinc.FH[selprov],type="b",col=4,lty=4,pch=4,lwd=2) 
points(1:5,povinc.BHF[selprov],type="b",col=5,lty=5,pch=5,lwd=2) 
axis(1, at=1:5, labels=nd[selprov]) 
legend(1,M+(M-m)/k,legend=c("DIR","FH","EBLUP"),ncol=3,col=c(1,4,5),lwd=rep(2,3), 
 lty=c(1,4,5),pch=c(1,4,5)) 
 
M<-max(povinc.dir.var[selprov],povinc.FH.mse[selprov],povinc.BHF.mse[selprov]) 
m<-min(povinc.dir.var[selprov],povinc.FH.mse[selprov],povinc.BHF.mse[selprov]) 
plot(1:5,povinc.dir.cv[selprov],type="n",ylim=c(m,M+(M-m)/k),xlab="Province",ylab="CV", 
 xaxt="n") 
points(1:5,povinc.dir.var[selprov],type="b",col=1,lty=1,pch=1,lwd=2) 
points(1:5,povinc.FH.mse[selprov],type="b",col=4,lty=4,pch=4,lwd=2) 
points(1:5,povinc.BHF.mse[selprov],type="b",col=5,lty=5,pch=5,lwd=2) 
axis(1, at=1:5, labels=nd[selprov]) 
legend(1,M+(M-m)/k,legend=c("DIR", "FH", "EBLUP"),ncol=3,col=c(1,4,5),lwd=rep(2,3), 
 lty=c(1,4,5),pch=c(1,4,5))   

 

According to Figure 7 (left), we can see how, for the five provinces with the smallest sample size, 
the FH estimators assume similar values to the direct estimators but are slightly more stable for the            
5 selected provinces than the direct and FH estimators. EBLUPs are clearly more stable for the 5 selected                            

provinces than the direct and FH estimators. Moreover, as we can observe in figure 7 (right), the 
estimated MSEs of the FH estimators are smaller for the provinces on the left, because they borrow 
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more information from the other provinces, since the nested error model is fitted with all the individuals 
in the sample (from the 𝐷𝐷=52 provinces). On the other hand, these MSEs grow gradually as the sample 
size decreases, which makes sense. In contrast, the estimated MSEs of the direct and FH estimators 
assume extremely small values for the provinces with smaller sample size (which is not very credible). 
In the case of the direct estimators, their variances are estimated with the limited data from each 
province and, therefore, these estimated variances (like the MSEs) are not reliable. BLUPs based on the 
FH model with known parameters have an MSE that cannot exceed the variance of the direct 
estimators; if these variances are incorrectly estimated, then the MSE of the FH estimator is also 
incorrect in that case. 

C. ELL Method 

The Elbers, Lanjouw and Lanjouw (2003) method, which we will call the ELL method, is the method 
traditionally used by the World Bank to build poverty or inequality maps. This method was the first to 
appear in the literature that can estimate more complex indicators than means or totals, as long as they 
are a function of a variable that measures individual purchasing power (usually net disposable income 
or expenditure). This method assumes the model with nested errors (32) for the log transformation of 
this variable, where the random effects are for the first-stage units of the sample design (clusters) rather 
than for the areas of interest. However, to facilitate comparability with the other methods presented in 
this paper, whilst also simplifying the notation, we will consider the first stage units to be equal to the 
areas. In this case, if 𝐸𝐸𝑑𝑑𝑑𝑑  is the variable that measures the individual's purchasing power 𝑖𝑖 in the area 𝑑𝑑, 
assuming 𝑌𝑌𝑑𝑑𝑑𝑑 = log (𝐸𝐸𝑑𝑑𝑑𝑑 + 𝑐𝑐), where 𝑐𝑐 > 0 is a constant, the ELL model is  

 𝑌𝑌𝑑𝑑𝑑𝑑 = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷 + 𝑢𝑢𝑑𝑑 + 𝑒𝑒𝑑𝑑𝑑𝑑 ,  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷, (38) 

where 𝑢𝑢𝑑𝑑 ∼ (𝑖𝑖𝑖𝑖𝑖𝑖 0,𝜎𝜎𝑢𝑢2) and 𝑒𝑒𝑑𝑑𝑑𝑑 ∼ (𝑖𝑖𝑖𝑖𝑖𝑖 0,𝜎𝜎𝑒𝑒2𝑘𝑘𝑑𝑑𝑑𝑑2 ), with 𝑢𝑢𝑑𝑑  and 𝑒𝑒𝑑𝑑𝑑𝑑  being independent, and 𝑘𝑘𝑑𝑑𝑑𝑑  known 
constants representing possible heteroscedasticity.  

The ELL estimator of a general parameter 𝛿𝛿𝑑𝑑 = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑) under the model (38) is obtained by 
means of a bootstrap procedure. This bootstrap procedure provides a numerical approximation of the 
theoretical ELL estimator, which is expressed as the marginal expectation 𝛿𝛿𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸[𝛿𝛿𝑑𝑑], unlike the EB 
predictor considered in Chapter V.B, which conditions the sample 𝒚𝒚𝑠𝑠. The same bootstrap procedure is 
used to obtain an estimate of the MSE of the ELL estimator.  

The bootstrap procedure works as follows. First of all, residuals of the model (38) fitted to the 
data are used to generate random effects 𝑢𝑢𝑑𝑑∗  for each area 𝑑𝑑 = 1, … ,𝐷𝐷, and errors 𝑒𝑒𝑑𝑑𝑑𝑑∗ , for each 
individual 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑, 𝑑𝑑 = 1, … ,𝐷𝐷. From these, from the estimator 𝜷𝜷�  of the regression parameter 𝜷𝜷, 
and using the values of the auxiliary variables for the in-sample and out-of-sample individuals, bootstrap 
values of the response variable are generated for all the individuals in the population, as follows:  

𝑌𝑌𝑑𝑑𝑑𝑑∗ = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷� + 𝑢𝑢𝑑𝑑∗ + 𝑒𝑒𝑑𝑑𝑑𝑑∗ ,  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,𝑑𝑑 = 1, … ,𝐷𝐷. 

This provides us with a census of the response variable, with which any type of indicator can be 
calculated. This generation process is repeated for 𝑎𝑎 = 1, … ,𝐴𝐴, obtaining 𝐴𝐴 complete censuses. For 
each census 𝑎𝑎, we compute the indicator of interest 𝛿𝛿𝑑𝑑

∗(𝑎𝑎) = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑
∗(𝑎𝑎)), where 𝒚𝒚𝑑𝑑

∗(𝑎𝑎) = (𝑌𝑌𝑑𝑑1
∗(𝑎𝑎), … ,𝑌𝑌𝑑𝑑𝑁𝑁𝑑𝑑

∗(𝑎𝑎))′ 
are the values of the response variable in the area 𝑑𝑑 in the bootstrap census 𝑎𝑎. Finally, the ELL estimator 
is obtained by averaging over the 𝐴𝐴 censuses,  

𝛿𝛿𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 =
1
𝐴𝐴
�𝛿𝛿𝑑𝑑

∗(𝑎𝑎)
𝐴𝐴

𝑎𝑎=1

. 
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Also, in this method, the MSE is estimated as follows:  

mse𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸) =
1
𝐴𝐴
�(
𝐴𝐴

𝑎𝑎=1

𝛿𝛿𝑑𝑑
∗(𝑎𝑎) − 𝛿𝛿𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸)2. 

To estimate the FGT indicator of order 𝛼𝛼 using this method, we first write this indicator                          
as a function of the response variables of the model 𝑌𝑌𝑑𝑑𝑑𝑑 = log (𝐸𝐸𝑑𝑑𝑑𝑑 + 𝑐𝑐). By substituting                                         
𝐸𝐸𝑑𝑑𝑑𝑑 = exp (𝑌𝑌𝑑𝑑𝑑𝑑) − 𝑐𝑐 in the formula of the FGT indicator given in (1), we obtain:  

 𝐹𝐹𝛼𝛼𝛼𝛼 =
1
𝑁𝑁𝑑𝑑

��
𝑧𝑧 + 𝑐𝑐 − 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑌𝑌𝑑𝑑𝑑𝑑)

𝑧𝑧
�
𝛼𝛼𝑁𝑁𝑑𝑑

𝑖𝑖=1

𝐼𝐼(exp (𝑌𝑌𝑑𝑑𝑑𝑑) < 𝑧𝑧 + 𝑐𝑐). (39) 

Thus, we calculate this indicator with the values 𝑌𝑌𝑑𝑑𝑑𝑑∗  generated for each census 𝑎𝑎, as follows:  

𝐹𝐹𝛼𝛼𝛼𝛼
∗(𝑎𝑎) =

1
𝑁𝑁𝑑𝑑

��
𝑧𝑧 + 𝑐𝑐 − 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑌𝑌𝑑𝑑𝑑𝑑

∗(𝑎𝑎))
𝑧𝑧 �

𝛼𝛼𝑁𝑁𝑑𝑑

𝑖𝑖=1

𝐼𝐼 �exp (𝑌𝑌𝑑𝑑𝑑𝑑
∗(𝑎𝑎)� < 𝑧𝑧 + 𝑐𝑐), 

and the ELL estimator of 𝐹𝐹𝛼𝛼𝛼𝛼  is then approximated by averaging these indicators over the 𝐴𝐴 generated 
censuses, i.e,  

𝐹𝐹�𝛼𝛼𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸 =
1
𝐴𝐴
�𝐹𝐹𝛼𝛼𝛼𝛼

∗(𝑎𝑎)
𝐴𝐴

𝑎𝑎=1

. 

Finally, the MSE of the estimator 𝐹𝐹�𝛼𝛼𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸  is estimated as follows:  

mse𝐸𝐸𝐸𝐸𝐸𝐸(𝐹𝐹�𝛼𝛼𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸) =
1
𝐴𝐴
�(
𝐴𝐴

𝑎𝑎=1

𝐹𝐹𝛼𝛼𝛼𝛼
∗(𝑎𝑎) − 𝐹𝐹�𝛼𝛼𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸)2. 

It is easy to verify that, for areas of large population size 𝑁𝑁𝑑𝑑  (usually the case in real applications), 
if we use this method to estimate the mean of the area 𝑑𝑑, 𝑌̄𝑌𝑑𝑑, by averaging 𝑌̄𝑌𝑑𝑑

∗(𝑎𝑎) ≈ 𝑿̄𝑿𝑑𝑑
′𝜷𝜷� + 𝑢𝑢𝑑𝑑

∗(𝑎𝑎) over 

the 𝐴𝐴 censuses, the average of the bootstrap random effects 𝑢𝑢𝑑𝑑
∗(𝑎𝑎), over the bootstrap repetitions, is 

𝐴𝐴−1 ∑ 𝑢𝑢𝑑𝑑
∗(𝑎𝑎)𝐴𝐴

𝑎𝑎=1 ≈ 𝐸𝐸(𝑢𝑢𝑑𝑑) = 0. Therefore, the ELL estimator, 𝑌̄𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸[𝑌̄𝑌𝑑𝑑], turns out to be the synthetic 
regression estimator,  

𝑌̄𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑿̄𝑿𝑑𝑑
′𝜷𝜷� . 

This is due to the fact that the marginal mean 𝐸𝐸[𝛿𝛿𝑑𝑑], without conditioning the data available from 
𝑌𝑌𝑑𝑑𝑑𝑑  in the sample, does not use these sample observations and therefore sticks to the prediction 
obtained through the model, without considering the random effects on the areas, as these disappear. 
Thus, the ELL estimator has the same problems as the synthetic regression estimator; namely, it can be 
highly biased if the regression model without the random effects is not verified; i.e., if the considered 
auxiliary variables do not explain all the heterogeneity of the response variable across the areas.  

Moreover, in the bootstrap method used, unlike in the usual bootstrap methods, the model is not 
refitted and estimated with bootstrap samples (which should be drawn from bootstrap censuses). 
Therefore, you are not replicating the real-world process in the bootstrap world. As a result, the MSE 
estimated by this method does not correctly reproduce the error incurred in real-world estimation. 
Finally, in the original ELL method, the random effects included in the model are for the clusters or     
first-stage sampling units and not for the areas of interest. If this model is considered, but the available 
auxiliary variables do not account for all the heterogeneity between areas, the error of the ELL estimator 
may be seriously underestimated.  
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Summary of the characteristics of the ELL estimator:   

Target indicators: general parameters.   

Data requirements:  

• Microdata from the 𝑝𝑝 considered auxiliary variables, from the same survey where the variable 
of interest is observed.  

• Area of interest obtained from the same survey where the variable of interest is observed.  

• Microdata from the considered 𝑝𝑝 auxiliary variables in the areas drawn from a census or 
administrative record (measured in the same way as in the survey).  

Advantages:  

• Based on individual-level data, which provides more detailed information than area-level 
data. Moreover, the sample size is usually much larger (𝑛𝑛 compared to 𝐷𝐷).  

• Any indicators can be estimated, as long as they are defined as a function of the response 
variables 𝑌𝑌𝑑𝑑𝑑𝑑.  

• They are unbiased under the model if the model parameters are known.  

• Once the model is fitted, it can be estimated for any subarea or subdomain. It can even be 
estimated at the individual level.  

• Once the model is fitted, all the indicators required (which are a function of 𝑌𝑌𝑑𝑑𝑑𝑑) can be 
estimated at the same time, without the need to fit a different model for each indicator. 

Disadvantages:  

• ELL estimators may have a high MSE under the model and may even perform worse than 
direct estimators if the unexplained heterogeneity between areas is significant, see Molina 
and Rao (2010). For the estimation of means, the ELL estimators are synthetic regression 
estimators, which assume a model without random effects on the areas.  

• They are model-based. It is, therefore, necessary to check that the model fits                                        
the data correctly.  

• They are not unbiased under the design and may have considerable bias under             
information design.  

• They can be seriously affected by isolated outliers.  

• If the model includes cluster effects rather than area of interest effects, but there is 
heterogeneity across areas, the ELL estimators underestimate the true MSE. Even if area 
effects are included in the model, the ELL estimators of the MSE do not estimate correctly the 
true MSE of the ELL estimators for each area.  

D. Best empirical predictor under the model with nested errors 

The best/Bayes predictor (BP) based on the model with nested errors was proposed by                               
Molina and Rao (2010) to estimate general non-linear indicators. These authors have used it to estimate 
the poverty incidence and poverty gap in the Spanish provinces by gender. It has also been used by the 
National Council for the Evaluation of Social Development Policy (Consejo Nacional para la Evaluación 
de la Política de Desarrollo Social (CONEVAL)) in Mexico in comparative studies with other methods, 
such as the ELL, for the estimation of poverty and inequality indicators in Mexican municipalities. This 
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method assumes that the variables 𝑌𝑌𝑑𝑑𝑑𝑑 = log (𝐸𝐸𝑑𝑑𝑑𝑑 + 𝑐𝑐) follow the model (32) under normality for the 
random effects on the areas 𝑢𝑢𝑑𝑑  and for the errors 𝑒𝑒𝑑𝑑𝑑𝑑. Under this model, the vectors of variables for each 
area, 𝒚𝒚𝑑𝑑 = (𝑌𝑌𝑑𝑑1, … ,𝑌𝑌𝑑𝑑𝑁𝑁𝑑𝑑)′, 𝑑𝑑 = 1, … ,𝐷𝐷, are independent and verify 𝒚𝒚𝑑𝑑 ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (𝝁𝝁𝑑𝑑 ,𝑽𝑽𝑑𝑑), with vector of 
means 𝝁𝝁𝑑𝑑 = 𝑿𝑿𝑑𝑑𝜷𝜷, being 𝑿𝑿𝑑𝑑 = (𝒙𝒙𝑑𝑑1, … ,𝒙𝒙𝑑𝑑𝑁𝑁𝑑𝑑)′ and covariance matrix 𝑽𝑽𝑑𝑑 = 𝜎𝜎𝑢𝑢2𝟏𝟏𝑁𝑁𝑑𝑑𝟏𝟏𝑁𝑁𝑑𝑑

′ + 𝜎𝜎𝑒𝑒2𝑨𝑨𝑑𝑑, where.       
𝑨𝑨𝑑𝑑 = diag(𝑘𝑘𝑑𝑑𝑑𝑑2 ; 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑). For a general indicator defined as a function of 𝒚𝒚𝑑𝑑, i.e., 𝛿𝛿𝑑𝑑 = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑) the 
best predictor is one that minimises the MSE and is expressed as  

 𝛿𝛿𝑑𝑑𝐵𝐵(𝜽𝜽) = 𝐸𝐸𝒚𝒚𝑑𝑑𝑑𝑑[𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑)|𝒚𝒚𝑑𝑑𝑑𝑑;𝜽𝜽], (40) 

where the expectation is assumed with respect to the distribution of the out-of-sample vector of values 
𝒚𝒚𝑑𝑑𝑑𝑑  from the domain 𝑑𝑑 given the values in the sample 𝒚𝒚𝑑𝑑𝑑𝑑. This conditioned distribution depends on the 
true value of the model parameters for 𝜽𝜽. By replacing 𝜽𝜽 with a consistent estimator 𝜽𝜽� in the best 
predictor (40), we obtain the so-called empirical best/Bayes(EB) predictor, 𝛿𝛿𝑑𝑑𝐸𝐸𝐸𝐸 = 𝛿𝛿𝑑𝑑𝐵𝐵(𝜽𝜽�). Once again, 
the usual estimation methods, which provide consistent estimators even in the absence of normality, 
are ML and REML, both under normal likelihood, and the Henderson III method.  

Under the nested error model (32), the distribution of 𝒚𝒚𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑, needed to calculate the best 
predictor (40), is obtained as follows. First of all, we decompose the matrices 𝑿𝑿𝑑𝑑  and 𝑽𝑽𝑑𝑑  into the in-
sample and out-of-sample parts in a similar way to how we decomposed 𝒚𝒚𝑑𝑑, i.e,  

𝒚𝒚𝑑𝑑 = �
𝒚𝒚𝑑𝑑𝑑𝑑
𝒚𝒚𝑑𝑑𝑑𝑑� ,  𝑿𝑿𝑑𝑑 = �𝑿𝑿𝑑𝑑𝑑𝑑𝑿𝑿𝑑𝑑𝑟𝑟

� ,  𝑽𝑽𝑑𝑑 = � 𝑽𝑽𝑑𝑑𝑑𝑑 𝑽𝑽𝑑𝑑𝑑𝑑𝑑𝑑
𝑽𝑽𝑑𝑑𝑑𝑑𝑑𝑑 𝑽𝑽𝑑𝑑𝑑𝑑

�. 

Since 𝒚𝒚𝑑𝑑  follows a normal distribution, then the conditioned ones also have normal           
distribution, i.e,  

 𝒚𝒚𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑 ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (𝝁𝝁𝑑𝑑𝑑𝑑|𝑠𝑠,𝑽𝑽𝑑𝑑𝑑𝑑|𝑠𝑠),  𝑑𝑑 = 1, … ,𝐷𝐷, (41) 

where the vector of conditioned means and the corresponding covariance matrix take the form  

 𝝁𝝁𝑑𝑑𝑑𝑑|𝑠𝑠 = 𝑿𝑿𝑑𝑑𝑑𝑑𝜷𝜷 + 𝛾𝛾𝑑𝑑(𝑦̄𝑦𝑑𝑑𝑑𝑑 − 𝒙̄𝒙𝑑𝑑𝑑𝑑𝑇𝑇 𝜷𝜷)𝟏𝟏𝑁𝑁𝑑𝑑−𝑛𝑛𝑑𝑑 , (42) 

 𝑽𝑽𝑑𝑑𝑑𝑑|𝑠𝑠 = 𝜎𝜎𝑢𝑢2(1 − 𝛾𝛾𝑑𝑑)𝟏𝟏𝑁𝑁𝑑𝑑−𝑛𝑛𝑑𝑑𝟏𝟏𝑁𝑁𝑑𝑑−𝑛𝑛𝑑𝑑
𝑇𝑇 + 𝜎𝜎𝑒𝑒2diag𝑖𝑖∈𝑟𝑟𝑑𝑑(𝑘𝑘𝑑𝑑𝑑𝑑2 ), (43) 

where 𝟏𝟏𝑘𝑘 is a vector of those of size 𝑘𝑘. Specifically, for the individual 𝑖𝑖 ∈ 𝑟𝑟𝑑𝑑, we have  

 𝑌𝑌𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑 ∼ 𝑁𝑁(𝜇𝜇𝑑𝑑𝑑𝑑|𝑠𝑠,𝜎𝜎𝑑𝑑𝑑𝑑|𝑠𝑠2 ), (44) 

where the conditioned mean and variance are expressed as  

 𝜇𝜇𝑑𝑑𝑑𝑑|𝑠𝑠 = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷 + 𝛾𝛾𝑑𝑑(𝑦̄𝑦𝑑𝑑𝑑𝑑 − 𝒙̄𝒙𝑑𝑑𝑑𝑑𝑇𝑇 𝜷𝜷), (45) 

 𝜎𝜎𝑑𝑑𝑑𝑑|𝑠𝑠2 = 𝜎𝜎𝑢𝑢2(1 − 𝛾𝛾𝑑𝑑) + 𝜎𝜎𝑒𝑒2𝑘𝑘𝑑𝑑𝑑𝑑2 . (46) 

If we now wish to estimate the FGT poverty indicator of order 𝛼𝛼, 𝛿𝛿𝑑𝑑 = 𝐹𝐹𝛼𝛼𝛼𝛼, we first assume that 
𝑌𝑌𝑑𝑑𝑑𝑑 = log (𝐸𝐸𝑑𝑑𝑑𝑑 + 𝑐𝑐), for 𝑐𝑐 > 0, verifies the model with nested errors. We rewrite the FGT indicator in 
question as a function of the response variables in the model 𝑌𝑌𝑑𝑑𝑑𝑑, i.e., as in (39), and we calculate the 
expectation that defines the best predictor 𝐹𝐹�𝛼𝛼𝛼𝛼𝐵𝐵 = 𝐸𝐸𝒚𝒚𝑑𝑑𝑑𝑑[𝐹𝐹𝛼𝛼𝛼𝛼|𝒚𝒚𝑑𝑑𝑠𝑠;𝜽𝜽]. To do so, we separate the sum that 
defines the FGT indicator given in (1) into the in-sample and the out-of-sample parts and, by inserting 
the expectation into the sum, we obtain  

 𝐹𝐹�𝛼𝛼𝛼𝛼𝐵𝐵 (𝜽𝜽) =
1
𝑁𝑁𝑑𝑑

�� 𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

+ �𝐹𝐹�𝛼𝛼,𝑑𝑑𝑑𝑑
𝐵𝐵

𝑖𝑖∈𝑟𝑟𝑑𝑑

(𝜽𝜽)�, (47) 
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where 𝐹𝐹�𝛼𝛼,𝑑𝑑𝑑𝑑
𝐵𝐵 (𝜽𝜽) = 𝐸𝐸[𝐹𝐹𝛼𝛼,𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑;𝜽𝜽] and the expectation is assumed with respect to the distribution of 

𝑌𝑌𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑, 𝑖𝑖 ∈ 𝑟𝑟𝑑𝑑, given in (44)-(46). For 𝛼𝛼 = 0,1, the expectations are easy to calculate, and are 
respectively expressed as  

 𝐹𝐹�0,𝑑𝑑𝑑𝑑
𝐵𝐵 (𝜽𝜽) = Φ(𝛼𝛼𝑑𝑑𝑑𝑑), (48) 

 𝐹𝐹�1,𝑑𝑑𝑑𝑑
𝐵𝐵 (𝜽𝜽) = Φ(𝛼𝛼𝑑𝑑𝑑𝑑) �1 −

1
𝑧𝑧
�exp �𝜇𝜇𝑑𝑑𝑑𝑑|𝑠𝑠 +

𝜎𝜎𝑑𝑑𝑑𝑑|𝑠𝑠2

2
�
𝛷𝛷(𝛼𝛼𝑑𝑑𝑑𝑑 − 𝜎𝜎𝑑𝑑𝑑𝑑|𝑠𝑠)

𝛷𝛷(𝛼𝛼𝑑𝑑𝑑𝑑)
− 𝑐𝑐��, (49) 

where Φ(⋅) is the distribution function of a standard Normal random variable and                                                  
𝛼𝛼𝑑𝑑𝑑𝑑 = [log ( 𝑧𝑧 + 𝑐𝑐) − 𝜇𝜇𝑑𝑑𝑑𝑑|𝑠𝑠]/𝜎𝜎𝑑𝑑𝑑𝑑|𝑠𝑠, with 𝜇𝜇𝑑𝑑𝑑𝑑|𝑠𝑠 and 𝜎𝜎𝑑𝑑𝑑𝑑|𝑠𝑠2  given in (45)-(46).  

For more complex 𝛿𝛿𝑑𝑑 = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑) indicators, e.g., FGT indicators for 𝛼𝛼 ≠ 0,1, the expectation 
defining the best predictor can often not be calculated analytically. In such cases, the best predictor can 
be approximated empirically using Monte Carlo simulation. The process would be as follows:  

1. Obtain an estimator 𝜽𝜽� = (𝜷𝜷�′,𝜎𝜎�𝑢𝑢2,𝜎𝜎�𝑒𝑒2)′ from the parameter vector 𝜽𝜽 = (𝜷𝜷′,𝜎𝜎𝑢𝑢2,𝜎𝜎𝑒𝑒2)′ by fitting 
the model (32) to the data (𝒚𝒚𝑠𝑠,𝑿𝑿𝑠𝑠).  

2. Generate, for 𝑎𝑎 = 1, … ,𝐴𝐴, vectors of response variables for the out-of-sample individuals in the 
area 𝑑𝑑, 𝒚𝒚𝑑𝑑𝑑𝑑

(𝑎𝑎), based on the distribution of 𝒚𝒚𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑 given in (41)-(43), with 𝜽𝜽 replaced by its 
estimator 𝜽𝜽� obtained in (a).  

3. Augment the generated vector 𝒚𝒚𝑑𝑑𝑑𝑑
(𝑎𝑎) with the sample data 𝒚𝒚𝑑𝑑𝑑𝑑 to form a census vector for the 

area 𝑑𝑑, 𝒚𝒚𝑑𝑑
(𝑎𝑎) = (𝒚𝒚𝑑𝑑𝑑𝑑′ , (𝒚𝒚𝑑𝑑𝑑𝑑

(𝑎𝑎))′)′. Using 𝒚𝒚𝑑𝑑
(𝑎𝑎), calculate the interest indicator 𝛿𝛿𝑑𝑑

(𝑎𝑎) = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑
(𝑎𝑎)) and 

repeat for 𝑎𝑎 = 1, … ,𝐴𝐴. The Monte Carlo approximation of the EB predictor of the 𝛿𝛿𝑑𝑑  indicator 
is obtained by averaging the indicators over the 𝐴𝐴 simulated censuses, i.e.  

 𝛿𝛿𝑑𝑑𝐸𝐸𝐸𝐸 =
1
𝐴𝐴
�𝛿𝛿𝑑𝑑

(𝑎𝑎)
𝐴𝐴

𝑎𝑎=1

. (50) 

In step (b), we have to simulate 𝐴𝐴 times a vector 𝒚𝒚𝑑𝑑𝑑𝑑
(𝑎𝑎) with multivariate Normal distribution of size 

𝑁𝑁𝑑𝑑 − 𝑛𝑛𝑑𝑑, which can be really large (e.g., the size of a province), which can be computationally very 
difficult or even impossible due to the large size of the multivariate vector to be generated. This can be 
avoided by noting that the covariance matrix of this vector, 𝑽𝑽𝑑𝑑𝑑𝑑|𝑠𝑠, given in (43), corresponds to the 

covariance matrix of a random vector 𝒚𝒚𝑑𝑑𝑑𝑑
(𝑎𝑎) generated from the model  

 𝒚𝒚𝑑𝑑𝑑𝑑
(𝑎𝑎) = 𝝁𝝁𝑑𝑑𝑑𝑑|𝑠𝑠 + 𝑣𝑣𝑑𝑑

(𝑎𝑎)𝟏𝟏𝑁𝑁𝑑𝑑−𝑛𝑛𝑑𝑑 + 𝝐𝝐𝑑𝑑𝑑𝑑
(𝑎𝑎), (51) 

where 𝑣𝑣𝑑𝑑
(𝑎𝑎) and 𝝐𝝐𝑑𝑑𝑑𝑑

(𝑎𝑎) are independent, and verify, respectively  

 𝑣𝑣𝑑𝑑
(𝑎𝑎) ∼ 𝑁𝑁(0,𝜎𝜎𝑢𝑢2(1 − 𝛾𝛾𝑑𝑑)),  𝝐𝝐𝑑𝑑𝑑𝑑

(𝑎𝑎) ∼ 𝑁𝑁(𝟎𝟎𝑁𝑁𝑑𝑑−𝑛𝑛𝑑𝑑 ,𝜎𝜎𝑒𝑒2diag𝑖𝑖∈𝑟𝑟𝑑𝑑(𝑘𝑘𝑑𝑑𝑑𝑑2 )); (52) 

(see Molina and Rao (2010)). Using the model (51)-(52), instead of generating a multivariate Normal 
vector 𝒚𝒚𝑑𝑑𝑑𝑑

(𝑎𝑎) of size 𝑁𝑁𝑑𝑑 − 𝑛𝑛𝑑𝑑, it is only necessary to generate the 1 + 𝑁𝑁𝑑𝑑 − 𝑛𝑛𝑑𝑑  independent Normal 

variables 𝑣𝑣𝑑𝑑
(𝑎𝑎) ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (0,𝜎𝜎𝑢𝑢2(1 − 𝛾𝛾𝑑𝑑)) and 𝜖𝜖𝑑𝑑𝑑𝑑

(𝑎𝑎) ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (0,𝜎𝜎𝑒𝑒2𝑘𝑘𝑑𝑑𝑑𝑑2 ), for 𝑖𝑖 ∈ 𝑟𝑟𝑑𝑑. Using the vector 𝒚𝒚𝑑𝑑𝑑𝑑
(𝑎𝑎) 

generated from the model (51), in step (c) we construct the census vector 𝒚𝒚𝑑𝑑
(𝑎𝑎) = (𝒚𝒚𝑑𝑑𝑑𝑑′, (𝒚𝒚𝑑𝑑𝑑𝑑

(𝑎𝑎))′)′ and 

calculate the indicator of interest 𝛿𝛿𝑑𝑑
(𝑎𝑎) = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑

(𝑎𝑎)).  

For an unsampled area 𝑑𝑑 (i.e. with 𝑛𝑛𝑑𝑑 = 0), we generate 𝒚𝒚𝑑𝑑𝑑𝑑
(𝑎𝑎) from the model (51) by taking       

𝛾𝛾𝑑𝑑 = 0 and, as there is no sampling part in this case, the census vector of the area 𝑑𝑑 is equal to the vector 
generated 𝒚𝒚𝑑𝑑

(𝑎𝑎) = 𝒚𝒚𝑑𝑑𝑑𝑑
(𝑎𝑎).  
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In the case of complex indicators, calculating analytical approximations for the MSE of the 
corresponding EB predictors is complicated. Molina and Rao (2010) describe a parametric bootstrap 
method for estimating the MSE based on the bootstrap method for finite populations by.               
González-Manteiga et al. (2008). This method consists of the following steps:  

1. Fit the model (32) to the sample data 𝒚𝒚𝑠𝑠 = (𝒚𝒚1𝑠𝑠′, … ,𝒚𝒚𝐷𝐷𝐷𝐷′)′, obtaining estimates of the model 
parameters, 𝜷𝜷�, 𝜎𝜎�𝑢𝑢2 and 𝜎𝜎�𝑒𝑒2.  

2. Generate bootstrap effects on the areas as follows:  

𝑢𝑢𝑑𝑑
∗(𝑏𝑏) ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (0,𝜎𝜎�𝑢𝑢2),  𝑑𝑑 = 1, … ,𝐷𝐷. 

3. Generate, independent of 𝑢𝑢1
∗(𝑏𝑏), … ,𝑢𝑢𝐷𝐷

∗(𝑏𝑏), bootstrap errors  

𝑒𝑒𝑑𝑑𝑑𝑑
∗(𝑏𝑏) ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (0,𝜎𝜎�𝑒𝑒2),  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,𝑑𝑑 = 1, … ,𝐷𝐷 

4. Generate a bootstrap population (or census) of response variable values by means of the model,  
𝑌𝑌𝑑𝑑𝑑𝑑
∗(𝑏𝑏) = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷� + 𝑢𝑢𝑑𝑑

∗(𝑏𝑏) + 𝑒𝑒𝑑𝑑𝑑𝑑
∗(𝑏𝑏),  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,𝑑𝑑 = 1, … ,𝐷𝐷. 

5. We define the census vector of response variables of the area 𝑑𝑑, given by                                             
𝒚𝒚𝑑𝑑
∗(𝑏𝑏) = (𝑌𝑌𝑑𝑑1

∗(𝑏𝑏), … ,𝑌𝑌𝑑𝑑𝑁𝑁𝑑𝑑
∗(𝑏𝑏))′. Calculate the indicators of interest from the bootstrap census.   

𝛿𝛿𝑑𝑑
∗(𝑏𝑏) = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑

∗(𝑏𝑏)), 𝑑𝑑 = 1, … ,𝐷𝐷.  

6. For the original sample 𝑠𝑠 = 𝑠𝑠1 ∪ ⋯∪ 𝑠𝑠𝐷𝐷, let 𝒚𝒚𝑠𝑠
∗(𝑏𝑏) = ((𝒚𝒚1𝑠𝑠

∗(𝑏𝑏))′, … , (𝒚𝒚𝐷𝐷𝐷𝐷
∗(𝑏𝑏))′)′ be the vector 

containing the bootstrap observations whose indices are in the sample, i.e. containing the 
variables 𝑌𝑌𝑑𝑑𝑑𝑑

∗(𝑏𝑏), 𝑖𝑖 ∈ 𝑠𝑠𝑑𝑑, 𝑑𝑑 = 1, … ,𝐷𝐷. Once more, fit the model (32) to the bootstrap data 𝒚𝒚𝑠𝑠
∗(𝑏𝑏) 

and obtain the bootstrap EB predictors of the indicators of interest, 𝛿𝛿𝑑𝑑
𝐸𝐸𝐸𝐸∗(𝑏𝑏), 𝑑𝑑 = 1, … ,𝐷𝐷.  

7. Repeat steps 2) - 6) for 𝑏𝑏 = 1, … ,𝐵𝐵, and we obtain the true values, 𝛿𝛿𝑑𝑑
∗(𝑏𝑏), and the corresponding 

EB predictors, 𝛿𝛿𝑑𝑑
𝐸𝐸𝐸𝐸∗(𝑏𝑏), for each area 𝑑𝑑 = 1, … ,𝐷𝐷, and for each bootstrap replication,                      

𝑏𝑏 = 1, … ,𝐵𝐵.  
8. The naive bootstrap estimators of the MSE of the EB predictors, 𝛿̂𝛿𝑑𝑑𝐸𝐸𝐸𝐸, are expressed as  

mse𝐵𝐵(𝛿𝛿𝑑𝑑𝐸𝐸𝐸𝐸) = 𝐵𝐵−1��𝛿̂𝛿𝑑𝑑
𝐸𝐸𝐸𝐸∗(𝑏𝑏) − 𝛿𝛿𝑑𝑑

∗(𝑏𝑏)�
2

𝐵𝐵

𝑏𝑏=1

,  𝑑𝑑 = 1, … ,𝐷𝐷. 

 

Note that, in order to estimate complex indicators, both the ELL method described in the 
previous chapter and the EB method presented in this chapter require data from a survey with 
observations of the variable of interest and auxiliary variables for all areas,                                               
{(𝑦𝑦𝑑𝑑𝑑𝑑 ,𝒙𝒙𝑑𝑑𝑑𝑑); 𝑖𝑖 ∈ 𝑠𝑠𝑑𝑑 ,𝑑𝑑 = 1, … ,𝐷𝐷}, as well as a census with the values of the same auxiliary variables for all 
population units, {𝒙𝒙𝑑𝑑𝑑𝑑; 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,𝑑𝑑 = 1, … ,𝐷𝐷}. In principle, the EB method must also identify in the 
census those units that are also in the sample within each area 𝑠𝑠𝑑𝑑. Linking survey and census data is not 
always possible in practice. However, the sample size of the area, 𝑛𝑛𝑑𝑑, is typically very small compared 
to the population size of the area, 𝑁𝑁𝑑𝑑. Next, we can use the Census best predictor proposed by Correa, 
Molina, and Rao (2012), which is obtained by calculating the conditioned expectations 𝐹𝐹�𝛼𝛼,𝑑𝑑𝑑𝑑

𝐵𝐵 (𝜽𝜽), also for 
the individuals in the sample as if they were not observed, i.e., the Census best predictor of 𝐹𝐹𝛼𝛼𝛼𝛼  is 
expressed as  

 𝐹𝐹�𝛼𝛼𝛼𝛼𝐶𝐶𝐶𝐶(𝜽𝜽) =
1
𝑁𝑁𝑑𝑑

�𝐹𝐹�𝛼𝛼,𝑑𝑑𝑑𝑑
𝐵𝐵

𝑁𝑁𝑑𝑑

𝑖𝑖=1

(𝜽𝜽). (53) 

In the same way as the EB predictor, we define the Census EB predictor of 𝐹𝐹𝛼𝛼𝛼𝛼, replacing in (53) a 
consistent estimator of 𝜽𝜽. If the expectation defining 𝐹𝐹�𝛼𝛼,𝑑𝑑𝑑𝑑

𝐵𝐵 (𝜽𝜽) cannot be calculated analytically, as 
happens when the indicator has a complicated form, in each replication of the Monte Carlo procedure 
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described in (1)-(3), we generate the complete census vector 𝒚𝒚𝑑𝑑  instead of just the vector of                          
out-of-sample observations 𝒚𝒚𝑑𝑑𝑑𝑑; i.e. we apply the Monte Carlo approximation (50) by                       
generating    𝒚𝒚𝑑𝑑

(𝑎𝑎) = 𝝁𝝁𝑑𝑑|𝑠𝑠 + 𝑣𝑣𝑑𝑑
(𝑎𝑎)𝟏𝟏𝑁𝑁𝑑𝑑−𝑛𝑛𝑑𝑑 + 𝝐𝝐𝑑𝑑

(𝑎𝑎), where 𝝁𝝁𝑑𝑑|𝑠𝑠 = 𝑿𝑿𝑑𝑑𝜷𝜷 + 𝛾𝛾𝑑𝑑(𝑦̄𝑦𝑑𝑑𝑑𝑑 − 𝒙̄𝒙𝑑𝑑𝑑𝑑𝑇𝑇 𝜷𝜷)𝟏𝟏𝑁𝑁𝑑𝑑  and 𝝐𝝐𝑑𝑑
(𝑎𝑎) ∼

𝑁𝑁(𝟎𝟎𝑁𝑁𝑑𝑑 ,𝜎𝜎𝑒𝑒2diag𝑖𝑖=1,…,𝑁𝑁𝑑𝑑(𝑘𝑘𝑑𝑑𝑑𝑑2 )). If the sampling fraction 𝑛𝑛𝑑𝑑/𝑁𝑁𝑑𝑑  is negligible, as it usually is in most actual 
cases, the Census EB estimator from 𝛿𝛿𝑑𝑑 = 𝐹𝐹𝛼𝛼𝛼𝛼  will be practically equal to the original EB estimator.  

For indicators whose calculation comes with a high computational cost, such as those that require 
ordering the individuals of the population according to their purchasing power, like the Fuzzy monetary 
and Fuzzy supplementary indicators, the computational time for the total procedure, including the 
bootstrap method for the calculation of the MSE, escalates. In this case, Ferretti, and Molina (2012) 
proposed a variation of the EB predictor, known as fast EB, which is much faster computationally. In the 
Monte Carlo procedure (1)-(3) for the EB predictor approximation, this procedure replaces the 
generation of the census in step (2) by the generation of a sample (different in each Monte Carlo 
replication) and the calculation of the true values of the indicators in step (3) by the calculation of    
design-based estimators, which only need a sample instead of the full census.  

EB predictor properties (approximate for Census EB if 𝑛𝑛𝑑𝑑/𝑁𝑁𝑑𝑑  is negligible):   

Target indicators: general parameters.   

Data requirements:  

• Microdata from the 𝑝𝑝 considered auxiliary variables, from the same survey where the variable 
of interest is observed.  

• Area of interest obtained from the same survey where the variable of interest is observed.  

• Microdata from the considered 𝑝𝑝 auxiliary variables from a census or administrative record 
(measured in the same way as in the survey).  

Advantages:  

• Based on individual-level data, which provides more detailed information than area-level data 
(it is also possible to incorporate area-level variables). Moreover, the sample size is usually 
much larger (𝑛𝑛 compared to 𝐷𝐷).  

• Any indicators can be estimated, as long as they are defined as a function of the response 
variables 𝑌𝑌𝑑𝑑𝑑𝑑.  

• They are unbiased under the model if the model parameters are known.  

• They are optimal in the sense of minimising the MSE under the model, for known values of 
the parameters.  

• They perform substantially better than the ELL estimators in terms of MSE under                             
the model (32) when the unexplained heterogeneity between areas is significant. For 
unsampled areas (with 𝑛𝑛𝑑𝑑 = 0), the EB and ELL estimators are practically the same. They will 
also be practically the same, in this case for all the areas, if all the heterogeneity between areas 
is explained by the auxiliary variables (𝜎𝜎𝑢𝑢2 = 0).  

• Once the model is fitted, it can be estimated for any subarea or subdomain. It can even be 
estimated at the individual level.  

• Once the model is fitted, all the indicators required (which are a function of 𝑌𝑌𝑑𝑑𝑑𝑑) can be 
estimated at the same time, without the need to fit a different model for each indicator.  
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Disadvantages:  

• They are model-based. Therefore, it is necessary to check that the model fits correctly (e.g., 
by means of the residuals).  

• They do not take the sample design into account. They are not unbiased under the design and 
may have considerable bias under information design.  

• They can be seriously affected by isolated outliers or lack of normality.  

• The MSE estimators obtained using the parametric bootstrap method are             
computationally intensive.  

Example 7.  EB estimators of poverty incidence, with R. Continuing with the previous examples, 
we demonstrate how to obtain the EB estimators of poverty incidence in R, based on a model with 
nested errors for the logarithm of income (transferred with a constant). The poverty line has been 
calculated in advance as 60% of median income, and it proves to be 𝑧𝑧 = 6557.143. Using this line, we 
need to define the function that gives us the poverty incidence: 

 povertyincidence <- function(y) { 
 result <- mean(y < 6557.143) 
 return (result) 
} 

We now call upon the function that calculates the EB estimators by selecting the poverty 
incidence function as the indicator, taking the logarithm transformation (default), and adding the 
constant=3500 constant to the income before this transformation, and using replications for the      
Monte Carlo approximation of the EB estimators. The above-mentioned constant is selected so that the 
residuals of the fit show an approximately symmetrical distribution, since the EB method described is 
based on normal distribution. Before calling on the function, we set the random number generator 
seeds so that the function will give us the same estimates in the event of repeating the call to this 
function, and we initialize the vector that will contain the EB estimators. :  

povinc.EB<-numeric(D) 
 
set.seed(123)       # We set the seed for random numbers 
res.EB<-ebBHF(income~age2+age3+age4+age5+nat1+educ1+educ3+labor1+labor2,dom=prov, 
selectdom=selprov,Xnonsample=Xoutsamp,MC=50,constant=3500,indicator=povertyincidence) 
povinc.EB[selprov]<-res.EB$eb$eb$eb 
 

For any model, the residuals should be analysed to check that the data doesn’t present clear 
evidence counter to the assumed model. Since the EB method requires normality, we plot a histogram 
and a q-q plot of normality of the residuals:  

 
resid.EB<-res.EB$fit$residuals 
hist(resid.EB,main="",xlab="Residuals") 
qqnorm(resid.EB,main="") 
 

Both charts (figure 8) show that the distribution of the residuals is approximately normal. In 
contrast, if we fit the model to income without the log transformation, both the histogram and the q-q 
normality plot (not included for purposes of conciseness) show a markedly skewed distribution                      
to the right. This transformation is, therefore, necessary in order not to move away                                                                
from the normality hypothesis.  
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Figure 8 
Histogram (left) and q-q plot of normality (right) of the residuals from the model fit with errors nested                            

to the logarithm of income  
(In units) 

  
 

Source: Prepared by the author. 

Finally, we calculate the bootstrap MSE estimators of the EB estimators with  𝐵𝐵=200 bootstrap 
replications and 𝑀𝑀𝑀𝑀=50 replications for the Monte Carlo approximation of the EB estimators.  

set.seed(123) 
povinc.mse.res<-
pbmseebBHF(income~age2+age3+age4+age5+nat1+educ1+educ3+labor1+labor2,dom=prov,selectdom
=selprov,Xnonsample=Xoutsamp,B=200,MC=50,constant=3500, 

 indicator=povertyincidence) 
 
povinc.eb.mse<-numeric(D) 
povinc.eb.mse[selprov]<-povinc.mse.res$mse$mse 
 

Finally, we graphically compare the EB estimators with the HT, FH and EBLUP direct estimators 
based on the model with nested errors of the poverty incidence for the selected provinces:  
 
k<-6 
M<-max(povinc.dir[selprov],povinc.FH [selprov],povinc.BHF [selprov],povinc.EB [selprov]) 
m<-min(povinc.dir[selprov],povinc.FH [selprov],povinc.BHF [selprov],povinc.EB [selprov]) 
plot(1:5,povinc.dir[selprov],type="n",ylim=c(m,M+(M-m)/k),xlab="Province",ylab="Estimator", 
 xaxt="n") 
points(1:5,povinc.dir[selprov],type="b",col=1,lty=1,pch=1,lwd=2) 
points(1:5,povinc.FH[selprov],type="b",col=4,lty=4,pch=4,lwd=2) 
points(1:5,povinc.BHF[selprov],type="b",col=5,lty=5,pch=5,lwd=2) 
points(1:5,povinc.EB[selprov],type="b",col=6,lty=6,pch=6,lwd=2) 
axis(1, at=1:5, labels=nd[selprov]) 
legend(1,M+(M-m)/k,legend=c("DIR", "FH", "EBLUP", "EB"),ncol=4,col=c(1,4,5,6),lwd=rep(2,4), 
lty=c(1,4,5.6),pch=c(1,4,5.6)) 
M<-max(povinc.dir.var[selprov],povinc.FH.mse[selprov],povinc.BHF.mse[selprov], 
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 povinc.eb.mse[selprov]) 
m<-min(povinc.dir.var[selprov],povinc.FH.mse[selprov],povinc.BHF.mse[selprov], 
 povinc.eb.mse[selprov]) 
plot(1:5,povinc.dir.var[selprov],type="n",ylim=c(m,M+(M-m)/k),xlab="Province",ylab="CV", 
 xaxt="n") 
points(1:5,povinc.dir.var[selprov],type="b",col=1,lty=1,pch=1,lwd=2) 
points(1:5,povinc.FH.mse[selprov],type="b",col=4,lty=4,pch=4,lwd=2) 
points(1:5,povinc.BHF.mse[selprov],type="b",col=5,lty=5,pch=5,lwd=2) 
points(1:5,povinc.eb.mse[selprov],type="b",col=6,lty=6,pch=6,lwd=2) 
axis(1, at=1:5, labels=nd[selprov]) 
legend(1,M+(M-m)/k,legend=c("DIR", "FH", "EBLUP", "EB"),ncol=4,col=c(1,4,5,6),lwd=rep(2,4), 
 lty=c(1,4,5.6),pch=c(1,4,5.6))   
 

According to figure 9 (left), the EB estimators are very similar to the EBLUPs. This is reasonable 
since both are based on an individual-level model, although the EB estimators fit the model for the 
logarithm of income, while the EBLUPs fit the model to the binary indicator of either having or not 
having income below the (variable poor) threshold.  

 
Theoretically, the model assumed by the EBLUPs is not true, since the response variable                      

is binary, and the predictors can provide values outside the interval. Moreover, despite the similarity 
between the EB and EBLUP estimates, Figure 9 (right) indicates that the EB estimators are more 
efficient than the EBLUPs. 

Figure 9 
EB and EBLUP estimates based on the nested error model, FH, and HT direct (left), and MSEs                                         

of  estimators (right) for the selected provinces 
(In proportions) 

 
Source: Prepared by the author. 

E. Hierarchical Bayes method under the nested error model 

The calculation of EB (or Census-EB) estimators together with their estimated MSEs is       
computationally intensive and may not be practical for very large populations or for very complex 
indicators (e.g., those that need to be ordered). Note that to obtain the Monte Carlo approximation of 
the EB estimator, it is necessary to construct 𝐴𝐴 censuses 𝒚𝒚(𝑎𝑎), 𝑎𝑎 = 1, … ,𝐴𝐴, which can be very large. 
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Moreover, when using bootstrap to estimate the MSE, the Monte Carlo approximation must be 
repeated for each bootstrap replication. In order to develop a computationally more efficient method,                             
Molina, Nandram and Rao (2014) proposed the hierarchical Bayes (HB) method for estimating general 
indicators. This procedure does not require the use of bootstrap methods for estimating the MSE as it 
provides samples from the posterior distribution, from which posterior variances that assume the role 
of MSE, or any other summary measure, can be easily obtained.  

The HB method is based on reparameterising the model with nested errors (32) in terms of the 
intraclass correlation coefficient 𝜌𝜌 = 𝜎𝜎𝑢𝑢2/(𝜎𝜎𝑢𝑢2 + 𝜎𝜎𝑒𝑒2) and considering prior distributions for the model 
parameters (𝜷𝜷,𝜌𝜌,𝜎𝜎𝑒𝑒2) that reflect the lack of prior information about them. Specifically, we consider the 
following HB model:  

(i) 𝑌𝑌𝑑𝑑𝑑𝑑|𝑢𝑢𝑑𝑑 ,𝜷𝜷,𝜎𝜎𝑒𝑒2 ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷 + 𝑢𝑢𝑑𝑑 ,𝜎𝜎𝑒𝑒2𝑘𝑘𝑑𝑑𝑑𝑑2 ),  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 , 
(ii) 𝑢𝑢𝑑𝑑|𝜌𝜌,𝜎𝜎𝑒𝑒2 ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 �0,

𝜌𝜌
1 − 𝜌𝜌

𝜎𝜎𝑒𝑒2� ,  𝑑𝑑 = 1, … ,𝐷𝐷, 

(iii) 𝜋𝜋(𝜷𝜷,𝜌𝜌,𝜎𝜎𝑒𝑒2) ∝
1
𝜎𝜎𝑒𝑒2

,  𝜖𝜖 ≤ 𝜌𝜌 ≤ 1 − 𝜖𝜖,  𝜎𝜎𝑒𝑒2 > 0,𝜷𝜷 ∈ 𝑅𝑅𝑝𝑝, 

where 𝜖𝜖 > 0 is selected very small to reflect lack of prior information. (See the application produced by 
Molina, Nandram, and Rao (2014), where inference is not sensitive to small changes of 𝜖𝜖.)  

The posterior distribution of the model parameters can be calculated based on the conditioned 
distributions using the chain rules as follows. Firstly, note that, with the HB method, the random effects 
𝒖𝒖 = (𝑢𝑢1, … ,𝑢𝑢𝐷𝐷)′ are considered as additional parameters. Then, the joint density of the vector of the 
parameters 𝜽𝜽 = (𝒖𝒖′,𝜷𝜷′,𝜎𝜎𝑒𝑒2, 𝜌𝜌)′ given the observations of the sample 𝒚𝒚𝑠𝑠 is expressed as  

 𝜋𝜋(𝒖𝒖,𝜷𝜷,𝜎𝜎𝑒𝑒2,𝜌𝜌|𝒚𝒚𝑠𝑠) = 𝜋𝜋1(𝒖𝒖|𝜷𝜷,𝜎𝜎𝑒𝑒2,𝜌𝜌,𝒚𝒚𝑠𝑠)𝜋𝜋2(𝜷𝜷|𝜎𝜎𝑒𝑒2,𝜌𝜌,𝒚𝒚𝑠𝑠)𝜋𝜋3(𝜎𝜎𝑒𝑒2|𝜌𝜌,𝒚𝒚𝑠𝑠)𝜋𝜋4(𝜌𝜌|𝒚𝒚𝑠𝑠), (54) 

where all conditioned densities except 𝜋𝜋4 have known forms. Since 𝜌𝜌 is defined in a closed interval 
within (0,1), we can generate values of 𝜋𝜋4 using a grid method. For more details see Molina, Nandram 
and Rao (2014)). Thus, samples of 𝜽𝜽 = (𝒖𝒖′,𝜷𝜷′,𝜎𝜎𝑒𝑒2,𝜌𝜌)′ can be generated directly from the posterior 
distribution given in (54), without the need to use Markov Chain Monte Carlo (MCMC) methods. Under 
general conditions, an independent posterior distribution can be ensured.  

Given 𝜽𝜽, under the HB model (i)-(iii), the variables 𝑌𝑌𝑑𝑑𝑑𝑑  for all the individuals in the population are 
independent and verify  

 𝑌𝑌𝑑𝑑𝑑𝑑|𝜽𝜽 ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (𝒙𝒙𝑑𝑑𝑑𝑑′𝜷𝜷 + 𝑢𝑢𝑑𝑑 ,𝜎𝜎𝑒𝑒2𝑘𝑘𝑑𝑑𝑑𝑑2 ),  𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,  𝑑𝑑 = 1, … ,𝐷𝐷. (55) 

The predictive density of 𝒚𝒚𝑑𝑑𝑑𝑑  is expressed as  

𝑓𝑓(𝒚𝒚𝑑𝑑𝑑𝑑|𝒚𝒚𝑠𝑠) = ��𝑓𝑓
𝑖𝑖∈𝑟𝑟𝑑𝑑

(𝑌𝑌𝑑𝑑𝑑𝑑|𝜽𝜽)𝜋𝜋(𝜽𝜽|𝒚𝒚𝑠𝑠)𝑑𝑑𝜽𝜽, 

where 𝜋𝜋(𝜽𝜽|𝒚𝒚𝑠𝑠) is given in (54). Finally, the HB estimator of the parameter 𝛿𝛿𝑑𝑑 = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑) is  

 𝛿𝛿𝑑𝑑𝐻𝐻𝐻𝐻 = 𝐸𝐸𝒚𝒚𝑑𝑑𝑑𝑑(𝛿𝛿𝑑𝑑|𝒚𝒚𝑠𝑠) = �𝛿𝛿𝑑𝑑 (𝒚𝒚𝑑𝑑)𝑓𝑓(𝒚𝒚𝑑𝑑𝑑𝑑|𝒚𝒚𝑠𝑠)𝑑𝑑𝒚𝒚𝑑𝑑𝑑𝑑 . (56) 

This estimator can be approximated using Monte Carlo simulation. To do so, we generate 
samples of the posterior distribution 𝜋𝜋(𝜽𝜽|𝒚𝒚𝑠𝑠) as follows. First, we generate a value 𝜌𝜌(𝑎𝑎) from 𝜋𝜋4(𝜌𝜌|𝒚𝒚𝑠𝑠) 
using a grid method (see Molina, Nandram, & Rao, 2014); then, we generate 𝜎𝜎𝑒𝑒

2(𝑎𝑎) from 𝜋𝜋3(𝜎𝜎𝑒𝑒2|𝜌𝜌(𝑎𝑎),𝒚𝒚𝑠𝑠); 
next, 𝜷𝜷(𝑎𝑎) is generated from 𝜋𝜋2(𝜷𝜷|𝜎𝜎𝑒𝑒

2(𝑎𝑎),𝜌𝜌(𝑎𝑎),𝒚𝒚𝑠𝑠) and, finally, 𝒖𝒖(𝑎𝑎) is generated from 
𝜋𝜋1(𝒖𝒖|𝜷𝜷(𝑎𝑎),𝜎𝜎𝑒𝑒

2(𝑎𝑎),𝜌𝜌(𝑎𝑎),𝒚𝒚𝑠𝑠). This process is repeated several 𝐴𝐴 times, in order to obtain a random sample 
𝜽𝜽(𝑎𝑎), 𝑎𝑎 = 1, … ,𝐴𝐴, from 𝜋𝜋(𝜽𝜽|𝒚𝒚𝑠𝑠). For each generated value 𝜽𝜽(𝑎𝑎) of 𝜋𝜋(𝜽𝜽|𝒚𝒚𝑠𝑠), we generate the out-of-
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sample values {𝑌𝑌𝑑𝑑𝑑𝑑
(𝑎𝑎), 𝑖𝑖 ∈ 𝑟𝑟𝑑𝑑} from the distribution given in (55) obtaining, for each area 𝑑𝑑, the vector of 

out-of-sample variables 𝒚𝒚𝑑𝑑𝑑𝑑
(𝑎𝑎). By joining it to the data vector in the sample 𝒚𝒚𝑑𝑑𝑑𝑑, we construct the census 

vector 𝒚𝒚𝑑𝑑
(𝑎𝑎) = (𝒚𝒚𝑑𝑑𝑑𝑑′, (𝒚𝒚𝑑𝑑𝑑𝑑

(𝑎𝑎))′)′. Now, using 𝒚𝒚𝑑𝑑
(𝑎𝑎), we calculate the indicator in question 𝛿𝛿𝑑𝑑

(𝑎𝑎) = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑
(𝑎𝑎)), 

and repeat for 𝑎𝑎 = 1, … ,𝐴𝐴. Finally, the HB estimator of 𝛿𝛿𝑑𝑑  is the posterior mean, which is approximated 
as follows:  

 𝛿𝛿𝑑𝑑𝐻𝐻𝐻𝐻 = 𝐸𝐸𝒚𝒚𝑑𝑑𝑑𝑑(𝛿𝛿𝑑𝑑|𝒚𝒚𝑠𝑠) ≈
1
𝐴𝐴
�𝛿𝛿𝑑𝑑

(𝑎𝑎)
𝐴𝐴

𝑎𝑎=1

. (57) 

Since there are no sample observations for unsampled areas (𝑛𝑛𝑑𝑑 = 0), we have 𝒚𝒚𝑑𝑑𝑑𝑑
(𝑎𝑎) = 𝒚𝒚𝑑𝑑

(𝑎𝑎), and 

we therefore generate the complete census vector 𝒚𝒚𝑑𝑑
(𝑎𝑎) = (𝑌𝑌𝑑𝑑1

(𝑎𝑎), … ,𝑌𝑌𝑑𝑑𝑁𝑁𝑑𝑑
(𝑎𝑎) )′ from the distribution (55).  

As a measure of estimation error of the HB estimator, 𝛿̂𝛿𝑑𝑑𝐻𝐻𝐻𝐻, the approximate posterior variance is 
provided in a similar way,  

 𝑉𝑉(𝛿𝛿𝑑𝑑|𝒚𝒚𝑠𝑠) ≈
1
𝐴𝐴
��𝛿𝛿𝑑𝑑

(𝑎𝑎) − 𝛿𝛿𝑑𝑑𝐻𝐻𝐻𝐻�
2

𝐴𝐴

𝑎𝑎=1

. (58) 

In the specific case of the FGT indicator of order 𝛼𝛼, 𝛿𝛿𝑑𝑑 = 𝐹𝐹𝛼𝛼𝛼𝛼, in the Monte Carlo run 𝑎𝑎, we 
calculate 𝐹𝐹𝛼𝛼𝛼𝛼

(𝑎𝑎) using 𝒚𝒚𝑑𝑑
(𝑎𝑎) applying (39) and the HB estimator is  

 𝐹𝐹�𝛼𝛼𝛼𝛼𝐻𝐻𝐻𝐻 ≈
1
𝐴𝐴
�𝐹𝐹𝛼𝛼𝛼𝛼

(𝑎𝑎)
𝐴𝐴

𝑎𝑎=1

. (59) 

As with the ELL and EB methods, if one wishes to estimate a non-linear indicator, this method 
requires the availability, in addition to the survey data from which the values of the variable of interest 
are extracted, of a census or administrative record from which to obtain the microdata of the auxiliary 
variables. If it is not possible to identify survey individuals in the census or record, a Census HB estimator 
can be calculated in a similar way to Census EB. In this estimator, even if there were values in the sample 
𝒚𝒚𝑑𝑑𝑑𝑑, these would be ignored and the complete census vector 𝒚𝒚𝑑𝑑

(𝑎𝑎)would be generated, by generating 

each value 𝑌𝑌𝑑𝑑𝑑𝑑
(𝑎𝑎) of (55) and the procedure would be the same as if the area were not sampled.  

Summary of the HB estimator based on the model with nested errors:   

Target indicators: general parameters.   

Data requirements:  

• Microdata from the 𝑝𝑝 considered auxiliary variables, from the same survey where the variable 
of interest is observed.  

• Area of interest obtained from the same survey where the variable of interest is observed.  

• Microdata from the considered 𝑝𝑝 auxiliary variables from a census or administrative record 
(measured in the same way as in the survey).  

Advantages:  

• Based on individual-level data, which provides more detailed information than area-level data 
(it is also possible to incorporate area-level variables). Moreover, the sample size is usually 
much larger (𝑛𝑛 compared to 𝐷𝐷).  

• Any indicators can be estimated, as long as they are defined as a function of the response 
variables 𝑌𝑌𝑑𝑑𝑑𝑑.  
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• They are unbiased under the model if the model parameters are known.  

• They are optimal in that they minimise the posterior variance.  

• In our simulation studies, they prove to be practically equal to the EB estimators.  

• Once the model is fitted, it can be estimated for any subarea or subdomain. It can even be 
estimated at the individual level.  

• Once the model is fitted, all the indicators required (which are a function of 𝑌𝑌𝑑𝑑𝑑𝑑) can be 
estimated at the same time, without the need to fit a different model for each indicator.  

• Unlike most Bayesian procedures, the proposed HB method does not require the                             
use of MCMC methods and therefore does not require the convergence of the                          
Markov chains to be monitored.  

• Bootstrap methods are not required for MSE estimation. Therefore, the total computational 
time can be significantly less than in the EB + bootstrap method.  

• The calculation of credible intervals or any other summary of the posterior                       
distribution is automatic.  

Disadvantages:  

• They are model-based. It is, therefore, necessary to check that the model fits correctly (e.g., 
through predictive or cross-validation residuals (see Molina, Nandram, & Rao, 2014)).  

• They do not take the sample design into account. They are not unbiased under the design and 
may have considerable bias under information design.  

• They can be seriously affected by isolated outliers or non-normality.  

• The HB method cannot be directly extended to more complex models without losing some of 
the advantages mentioned above, such as avoiding the application of MCMC methods. 

F. Methods based on generalised linear mixed models 

Access to certain educational or health services, or the availability of certain housing amenities, are 
usually measured in a particular area in terms of the proportion of people in that area who may or may 
not have access to the service or amenity in question. The linear mixed models considered so far do not 
provide predictions in the natural space [0,1] where these proportions are. Generalised linear mixed 
models (GLMM) are generally used to obtain predictions in this space. If 𝑌𝑌𝑑𝑑𝑑𝑑 ∈ {0,1} is the binary variable 
that measures the lack or otherwise of the service or amenity in question, the most usual estimation 
model in small areas is the GLMM with random effects in the areas, given by  

 𝑌𝑌𝑑𝑑𝑑𝑑|𝑣𝑣𝑑𝑑 ∼ Bern(𝑝𝑝𝑑𝑑𝑑𝑑),𝑔𝑔(𝑝𝑝𝑑𝑑𝑑𝑑) = 𝒙𝒙𝑑𝑑𝑑𝑑′𝜶𝜶 + 𝑣𝑣𝑑𝑑 , 𝑣𝑣𝑑𝑑 ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (0,𝜎𝜎𝑣𝑣2), 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,𝑑𝑑 = 1, … ,𝐷𝐷, (60) 

where 𝑣𝑣𝑑𝑑  is the effect of the area 𝑑𝑑, 𝜶𝜶 is the vector of regression coefficients and 𝑔𝑔: (0,1) → 𝑅𝑅 is the link 
function (bijective, with continuous derivative). In particular, the logistical link given by.                           
𝑔𝑔(𝑝𝑝) = log ( 𝑝𝑝/(1 − 𝑝𝑝)) is probably the most widely used in practice.  

As discussed above, the best predictor under the model (which minimises the MSE under the 
model) of the ratio 𝑃𝑃𝑑𝑑 = 𝑌̄𝑌𝑑𝑑, is expressed as  

 𝑃𝑃�𝑑𝑑𝐵𝐵(𝜽𝜽) = 𝐸𝐸(𝑃𝑃𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑;𝜽𝜽) =
1
𝑁𝑁𝑑𝑑

�� 𝑌𝑌𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

+ �𝐸𝐸
𝑖𝑖∈𝑟𝑟𝑑𝑑

(𝑌𝑌𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑;𝜽𝜽)�. (61) 
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The distribution of 𝑌𝑌𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑 depends on the vector 𝜽𝜽 = (𝜶𝜶′,𝜎𝜎𝑣𝑣2)′ of parameters of the model. In 
practice, we obtain the EB predictor by replacing 𝜽𝜽 with a consistent estimator 𝜽𝜽� in the best predictor, 
i.e., 𝑃𝑃�𝑑𝑑𝐸𝐸𝐸𝐸 = 𝑃𝑃�𝑑𝑑𝐵𝐵(𝜽𝜽�).  

The estimator 𝜽𝜽� = (𝜶𝜶�′,𝜎𝜎�𝑣𝑣2) of 𝜽𝜽 = (𝜶𝜶′,𝜎𝜎𝑣𝑣2) is obtained by fitting the GLMM model given in (60) 
to the sample data 𝒚𝒚𝑠𝑠 = (𝒚𝒚1𝑠𝑠′, … ,𝒚𝒚𝐷𝐷𝐷𝐷′)′. If you want to fit the model using the maximum likelihood 
method, you need to maximise the likelihood given by 𝑓𝑓(𝒚𝒚𝑠𝑠) = ∫ 𝑓𝑓𝑅𝑅𝐷𝐷 (𝒚𝒚𝑠𝑠|𝒗𝒗)𝑓𝑓(𝒗𝒗)𝑑𝑑𝒗𝒗, where                        
𝒗𝒗 = (𝑣𝑣1, … , 𝑣𝑣𝐷𝐷)′. Under the GLMM mentioned above, such a likelihood has no explicit form. For this 
fitting method it is therefore necessary to use approximations of the integral (e.g., numerical) together 
with numerical maximisation techniques. Once the model has been fitted, we need to calculate the 
expectations 𝐸𝐸(𝑌𝑌𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑;𝜽𝜽�) that define the EB predictor. One way to approximate this expectation 
would be to use Bayes' Theorem and the fact that, given 𝑣𝑣𝑑𝑑, the variables {𝑌𝑌𝑑𝑑𝑑𝑑; 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑} are all 
independent. In this case, such an expectation can be expressed as follows:  

 𝐸𝐸(𝑌𝑌𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑;𝜽𝜽�) =
𝐸𝐸{ℎ(𝒙𝒙𝑑𝑑𝑑𝑑′𝜶𝜶 + 𝑣𝑣𝑑𝑑)𝑓𝑓(𝒚𝒚𝑑𝑑𝑑𝑑|𝑣𝑣𝑑𝑑);𝜽𝜽�}

𝐸𝐸{𝑓𝑓(𝒚𝒚𝑑𝑑𝑑𝑑|𝑣𝑣𝑑𝑑);𝜽𝜽�}
,  𝑖𝑖 ∈ 𝑟𝑟𝑑𝑑 , (62) 

where ℎ = 𝑔𝑔−1 is the inverse link and  

 

           𝑓𝑓(𝒚𝒚𝑑𝑑𝑑𝑑|𝑣𝑣𝑑𝑑) = �𝑝𝑝𝑑𝑑𝑑𝑑
𝑌𝑌𝑑𝑑𝑑𝑑

𝑖𝑖∈𝑠𝑠𝑑𝑑

(1 − 𝑝𝑝𝑑𝑑𝑑𝑑)(1−𝑌𝑌𝑑𝑑𝑑𝑑)

= �ℎ
𝑖𝑖∈𝑠𝑠𝑑𝑑

(𝒙𝒙𝑑𝑑𝑑𝑑′𝜶𝜶 + 𝑣𝑣𝑑𝑑)𝑌𝑌𝑑𝑑𝑑𝑑{1 − ℎ(𝒙𝒙𝑑𝑑𝑑𝑑′𝜶𝜶 + 𝑣𝑣𝑑𝑑)}(1−𝑌𝑌𝑑𝑑𝑑𝑑). 
(63) 

For the logistic link, the inverse link is: 

 ℎ(𝒙𝒙𝑑𝑑𝑑𝑑′𝜶𝜶 + 𝑣𝑣𝑑𝑑) = exp (𝒙𝒙𝑑𝑑𝑑𝑑′𝜶𝜶 + 𝑣𝑣𝑑𝑑)/{1 + exp (𝒙𝒙𝑑𝑑𝑑𝑑′𝜶𝜶 + 𝑣𝑣𝑑𝑑)}. Using (63), we can approximate the two 
expectations which appear in (62) by means of Monte Carlo simulation, generating 𝑣𝑣𝑑𝑑

(𝑟𝑟) ∼ 𝑁𝑁(0,𝜎𝜎�𝑣𝑣2), 𝑟𝑟 =
1, … ,𝑅𝑅, and then calculating  

 𝐸𝐸(𝑌𝑌𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑;𝜽𝜽�) ≈
𝑅𝑅−1 ∑ ℎ𝑅𝑅

𝑟𝑟=1 (𝒙𝒙𝑑𝑑𝑑𝑑′𝜶𝜶� + 𝑣𝑣𝑑𝑑
(𝑟𝑟))𝑓𝑓(𝒚𝒚𝑑𝑑𝑑𝑑|𝑣𝑣𝑑𝑑

(𝑟𝑟))
𝑅𝑅−1 ∑ 𝑓𝑓𝑅𝑅

𝑟𝑟=1 (𝒚𝒚𝑑𝑑𝑑𝑑|𝑣𝑣𝑑𝑑
(𝑟𝑟))

,  𝑖𝑖 ∈ 𝑟𝑟𝑑𝑑 , (64) 

where 𝑓𝑓 is the conditioned density 𝑓𝑓(𝒚𝒚𝑑𝑑𝑑𝑑|𝑣𝑣𝑑𝑑), with 𝜶𝜶 replaced by 𝜶𝜶�.  

The best predictor (61) has minimal MSE and is unbiased under the model (60). However, fitting 
the GLMM and calculating the Monte Carlo approximation of 𝑃𝑃�𝑑𝑑𝐸𝐸𝐸𝐸 as described above, requires 
significant computational time. Estimating the MSE of the EB predictors using a resampling procedure 
increases the computational time, making it impractical for very large populations. Moreover, when 
estimating the parameters of the model 𝜽𝜽 and replacing the estimators in order to obtain the empirical 
version of the best (EB) predictor, we lose the unbiasedness.  

There are simple estimators that, although not optimal, are very similar to the optimal estimators 
under certain conditions and can be obtained directly from the output of the usual software for GLMM 
fitting. When estimating a ratio, if 𝜶𝜶� and 𝑣𝑣�𝑑𝑑  are the estimators of 𝜶𝜶 and 𝑣𝑣𝑑𝑑  returned by the software, a 
plug-in estimator can be calculated by simply predicting the out-of-sample values by means of the 
model, i.e., assuming  

 𝑃𝑃�𝑑𝑑𝑃𝑃𝑃𝑃 =
1
𝑁𝑁𝑑𝑑

�� 𝑌𝑌𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑠𝑠𝑑𝑑

+ � 𝑝̂𝑝𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑟𝑟𝑑𝑑

�, (65) 

where 𝑝̂𝑝𝑑𝑑𝑑𝑑 = ℎ(𝒙𝒙𝑑𝑑𝑑𝑑′𝜶𝜶� + 𝑣𝑣�𝑑𝑑) is the predicted value of the out-of-sample observation 𝑌𝑌𝑑𝑑𝑑𝑑, 𝑖𝑖 ∈ 𝑟𝑟𝑑𝑑. Where 
𝜽𝜽 = (𝜶𝜶′,𝜎𝜎𝑣𝑣2) is known, the plug-in estimator, 𝑃𝑃�𝑑𝑑𝑃𝑃𝑃𝑃, cannot have lower MSE than the best predictor 𝑃𝑃�𝑑𝑑𝐵𝐵. 
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In fact, unlike the best predictor, the plug-in estimator is not unbiased unless the link function is linear. 
However, the plug-in estimator is much easier to calculate. The two estimators match when the link 
function 𝑔𝑔(⋅) is linear. In the case of the logistic link 𝑔𝑔(𝑝𝑝) = log ( 𝑝𝑝/(1 − 𝑝𝑝)), this is approximately linear 
for 𝑝𝑝 ∈ (0.2,0.8) as shown in Figure 10. This approximate linearity of 𝑔𝑔(𝑝𝑝) for central values of 𝑝𝑝 leads 
us to think that the plug-in estimator (65) based on the model with logistic link should be very similar to 
the EB predictor, 𝑃𝑃�𝑑𝑑𝐸𝐸𝐸𝐸, in terms of MSE, at least for not very extreme values of 𝑝𝑝. Moreover, this 
approximate linearity for central values of 𝑝𝑝 also makes both the EB and plug-in estimators of the ratio 
𝑃𝑃𝑑𝑑 = 𝑌̄𝑌𝑑𝑑, resemble the EBLUP, 𝑃𝑃�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑌̄𝑌�𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, based on the model with nested errors described in 
Chapter I. This means that, for estimating proportions of individuals with neither too few nor extremely 
frequent characteristics, it also makes sense to use the EBLUP.  

Both the EB and plug-in methods, based on non-linear models such as the GLMM given in (60), 
even estimating mean values 𝑌̄𝑌𝑑𝑑, need to have the values of the auxiliary variables for all individuals 
(microdata), obtained from a census or an administrative record. This is required for calculating the 
expectation 𝐸𝐸(𝑌𝑌𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑;𝜽𝜽) in the case of the EB predictor, or to predict the probability 𝑝̂𝑝𝑑𝑑𝑑𝑑  in the case of 
the plug-in estimator. However, in addition to the survey data, the EBLUP of 𝑌̄𝑌𝑑𝑑  only requires the 
population means of these variables in the areas. Such aggregated data is generally available without 
confidentiality restrictions.  

                 Figure 10 
                 Logistic link 

 
Source: Prepared by the author. 

 

In principle, the GLMM given in (60) could be used to estimate poverty incidence (FGT indicator 
of order 𝛼𝛼 = 0), 𝐹𝐹0𝑑𝑑. For the poverty gap (FGT indicator with 𝛼𝛼 = 1), 𝐹𝐹1𝑑𝑑, it would not make sense to 
use it because they are not ratios, since the individual values 𝐹𝐹1,𝑑𝑑𝑑𝑑 are not binary variables. In the case of 
poverty incidence, taking 𝑌𝑌𝑑𝑑𝑑𝑑 = 𝐼𝐼(𝐸𝐸𝑑𝑑𝑑𝑑 < 𝑧𝑧)as a binary response variable, we obtain 𝑃𝑃𝑑𝑑 = 𝐹𝐹𝛼𝛼𝛼𝛼. The 
resulting best predictor assumes the expression (47) from Section V.D, but the expectation appearing in 
the second term would be with respect to the conditioned distribution under the model(60) and would 
have to be approximated numerically; e.g., as in (64) since, in this case, the conditioned distributions 
𝑌𝑌𝑑𝑑𝑑𝑑|𝒚𝒚𝑑𝑑𝑑𝑑 do not have a known form. As mentioned, the plug-in estimator (65) would have a lower 
computational cost. Again, if the survey units in the census or register cannot be identified, a Census EB 
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estimator can be used to substitute the observations of the sample in the predictor (61) 𝑌𝑌𝑑𝑑𝑑𝑑, 𝑖𝑖 ∈ 𝑠𝑠𝑑𝑑, with 
predictions obtained as in (62), or using 𝑝̂𝑝𝑑𝑑𝑑𝑑  as a prediction in the case of the Census plug-in estimator.  

The MSE of the corresponding predictor (whether EB or plug-in) can be estimated using a 
bootstrap procedure as follows (see González-Manteiga et al., 2007):  

1. Fit the GLMM given in (60) to the sample data 𝑠𝑠, obtaining estimators 𝜎𝜎�𝑣𝑣2 and 𝜶𝜶� of the 
parameters of the model.  

2. Generate bootstrap random effects  

𝑣𝑣𝑑𝑑
∗(𝑏𝑏) ∼ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (0,𝜎𝜎�𝑣𝑣2),  𝑑𝑑 = 1, … ,𝐷𝐷. 

3. Generate a bootstrap census 𝒚𝒚𝑑𝑑
∗(𝑏𝑏) = (𝑌𝑌𝑑𝑑1, … ,𝑌𝑌𝑑𝑑𝑁𝑁𝑑𝑑)′, as follows:  

 𝑌𝑌𝑑𝑑𝑑𝑑
∗(𝑏𝑏) ∼ B𝑖𝑖𝑖𝑖𝑖𝑖 ern(𝑝𝑝𝑑𝑑𝑑𝑑

∗(𝑏𝑏)),𝑝𝑝𝑑𝑑𝑑𝑑
∗(𝑏𝑏) = ℎ(𝒙𝒙𝑑𝑑𝑑𝑑′𝜶𝜶� + 𝑣𝑣𝑑𝑑

∗(𝑏𝑏)), 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 ,𝑑𝑑 = 1, … ,𝐷𝐷, (66) 

 and calculate the true values of the indicators 𝑃𝑃𝑑𝑑
∗(𝑏𝑏) = 𝑌̄𝑌𝑑𝑑

∗(𝑏𝑏), 𝑑𝑑 = 1, … ,𝐷𝐷.  

4. For each area 𝑑𝑑 = 1, … ,𝐷𝐷, extract the sample elements of that area from the bootstrap census 
𝒚𝒚𝑑𝑑
∗(𝑏𝑏), 𝑌𝑌𝑑𝑑𝑑𝑑, 𝑖𝑖 ∈ 𝑠𝑠𝑑𝑑

∗(𝑏𝑏), constructing the vector 𝒚𝒚𝑑𝑑𝑑𝑑
∗(𝑏𝑏). Let 𝒚𝒚𝑠𝑠

∗(𝑏𝑏) = ((𝒚𝒚1𝑠𝑠
∗(𝑏𝑏))′, … , (𝒚𝒚𝐷𝐷𝐷𝐷

∗(𝑏𝑏))′)′ be the 
vector with the sample values of all the areas, with 𝑠𝑠 = 𝑠𝑠1 ∪ ⋯∪ 𝑠𝑠𝐷𝐷 being the original sample.  

5. Fit the model (60) to the bootstrap data 𝒚𝒚𝑠𝑠
∗(𝑏𝑏) and calculate the bootstrap predictors 𝑃𝑃�𝑑𝑑

𝐸𝐸𝐸𝐸∗(𝑏𝑏), 
𝑑𝑑 = 1, … ,𝐷𝐷.  

6. Repeat steps 2) - 5), for 𝑏𝑏 = 1, … ,𝐵𝐵. The bootstrap estimator of the MSE of the predictor 𝑃𝑃�𝑑𝑑𝐸𝐸𝐸𝐸 
is expressed as  

𝑚𝑚𝑚𝑚𝑒𝑒𝐵𝐵(𝑃𝑃�𝑑𝑑𝐸𝐸𝐸𝐸) = 𝐵𝐵−1�(
𝐵𝐵

𝑏𝑏=1

𝑃𝑃�𝑑𝑑
𝐸𝐸𝐸𝐸∗(𝑏𝑏) − 𝑃𝑃𝑑𝑑

∗(𝑏𝑏))2. 

Summary of characteristics of the GLMM-based EB/plug-in predictor compared to methods 
applicable to mean estimation:   

Target indicators: Proportions or totals of a binary variable (e.g., lack or otherwise of a certain 
commodity or service).   

Data requirements:  

• Microdata from the 𝑝𝑝 considered auxiliary variables, from the same survey where the variable 
of interest is observed.  

• Area of interest obtained from the same survey where the variable of interest is observed.  

• Microdata from the considered 𝑝𝑝 auxiliary variables from a census or administrative record 
(measured in the same way as in the survey).  

Advantages:  

• The number of observations used to fit the model is the total sample size 𝑛𝑛, much larger than 
the number of areas in the FH models. The model parameters are, therefore, estimated very 
efficiently and the improvements in efficiency over direct estimators will be greater than with 
FH models.  

• The considered regression model incorporates unexplained heterogeneity between areas.  

• Unlike the FH model, no variance needs to be known.  
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• The MSE estimator under the model obtained (e.g., by means of bootstrap procedures) is a 
stable estimator of the MSE under the design and is unbiased under the design when averaged 
over many areas.  

• Estimates can be disaggregated for any required subdomain or subarea within the areas, even 
at the individual level.  

• It can be estimated in unsampled areas. 

Disadvantages:  

• They are based on a model, and it is therefore necessary to analyse this model (e.g., through 
the residuals).  

• It does not take the sample design into account. Therefore, it is not unbiased under                           
the design and is more suitable for simple random sampling. It will be affected by          
informative sample designs.  

• Microdata is usually obtained from a census or administrative record, and there are often 
confidentiality issues that limit the use of this type of data.  

• The estimator of the MSE under the model obtained (e.g., by means of bootstrap procedures) 
is correct under the considered model and is not unbiased under the design for the MSE under 
the design for a given area.  

• The EB predictor (unlike the plug-in estimator) has a high computational cost.  
• The MSE of the EB predictor obtained (e.g., by means of a bootstrap procedure) has an 

excessively high computational cost and may not be practical for very large populations. This 
cost is significantly lower for the plug-in predictor.  

• They require refitting to verify the benchmarking property: that the sum of the estimated totals 
in the areas of a larger region matches the direct estimator for that area. 
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VI. Application: estimating average income  
and poverty rates in Montevideo 

In this chapter we are going to use some of the techniques described above to estimate average incomes 
and incidence of non-extreme poverty for the census tracts and for both genders in Montevideo, 
Uruguay. To this end, we will use data from the Continuous Household Survey (Encuesta Continua de 
Hogares or ECH) and the Population Census, both from 2011. This application is for illustrative purposes 
only and can probably be improved by carrying out a more intensive search for auxiliary information. 
Therefore, the results obtained in this application should not be considered as definitive estimates.  

Since the parameters of the models to be considered may depend on gender, for each type of 
estimator we will fit separate models for each gender. Specifically, we will compute direct                         
estimates using the ECH microdata for each tract and gender, FH estimates based on the basic area-
level model (21), using certain population totals extracted from the census as auxiliary information for 
each tract and gender and, finally, Census EB estimates based on the basic individual-level model (38) 
for the logarithm of income, using census microdata from some variables also measured in the ECH. 
Note that even if only the mean income, which is a linear parameter in the income of individuals                      
in the area, were estimated, when performing a non-linear (logarithmic) transformation of the      
response variable in the model with nested errors (38), the target parameter, written as a function of 
the values of the model's response variable, is a non-linear parameter in the values of the model's 
response variable. Thus, in this case, the EBLUP does not make sense since it is a linear estimator in the 
values of the model response variable in the sample and we need to resort to the EB methodology. 
Additionally, since individuals from the ECH are not identified in the census, we consider the Census EB 
estimator. In addition to the point estimators, estimates of the MSEs of each estimator will be obtained. 
Calculations have been performed using the R sae packages (Molina and Marhuenda, 2015) and lme4 
(Bates et al. 2015).  

The population sizes according to the complete census questionnaire (for residents in private 
dwellings) of the 2011 Population Census in Montevideo are N = 656,162 for females and N = 566,698 
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for males. The ECH sample sizes, after discounting missing data, are 𝑛𝑛 = 26,233 for females and            
𝑛𝑛 = 22,464 for males. For the 𝐷𝐷 = 25 tracts that appear in the census, the sample sizes vary between 
56 and 3482 for females and between 65 and 2820 for males. Although these are not excessively small 
sample sizes, we will see that small area estimation techniques can still provide more accurate 
estimates, by measuring such accuracy in terms of mean squared error. It should also be borne in mind 
that, according to the available data, poverty incidence in Montevideo is relatively low and, in order to 
estimate these numbers accurately using direct estimators, the sample sizes needed by tract and 
gender must be larger than for estimating proportions close to 0.5 or means of continuous variables, 
such as mean income. In fact, even if the sample size is not excessively small, the direct estimator may 
be equal to zero due to the fact that no individuals are obtained with incomes below the poverty line. 
The non-extreme poverty threshold for urban areas in 2011 is 3,182 Uruguayan pesos.  

For both mean income 𝐸̄𝐸𝑑𝑑 = 𝑁𝑁𝑑𝑑−1 ∑ 𝐸𝐸𝑑𝑑𝑑𝑑
𝑁𝑁𝑑𝑑
𝑖𝑖=1  and poverty incidence 𝐹𝐹0𝑑𝑑 = 𝑁𝑁𝑑𝑑−1 ∑ 𝐼𝐼𝑁𝑁𝑑𝑑

𝑖𝑖=1 (𝐸𝐸𝑑𝑑𝑑𝑑 < 𝑧𝑧) for 

each census tract and gender, the corresponding direct estimators, 𝐸̄𝐸�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷  and 𝐹𝐹�0𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷, and their estimated 
sample variances var� 𝜋𝜋(𝐸̄𝐸�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷) and var� 𝜋𝜋(𝐹𝐹�0𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷) are obtained using the ECH microdata in formulae 4) - 6). 
This is provided by the direct() function of the sae package, by introducing the sampling weights of the 
ECH. For population sizes of the census tracts, 𝑁𝑁𝑑𝑑, we use the sizes obtained from the Census.  

The FH estimators and their estimated mean square errors are obtained from the model (21) for 
𝛿𝛿𝑑𝑑 = 𝐸̄𝐸𝑑𝑑  or 𝛿𝛿𝑑𝑑 = 𝐹𝐹0𝑑𝑑. In the case of average income, 𝛿𝛿𝑑𝑑 = 𝐸̄𝐸𝑑𝑑, for both genders, we consider as auxiliary 
variables aggregated at the census tract level (components of 𝒙𝒙𝑑𝑑  in the model), the census ratios of 
literate individuals, unemployed (but not retired) individuals, average age, and average years in 
education. For the incidence of poverty, 𝛿𝛿𝑑𝑑 = 𝐹𝐹0𝑑𝑑, only the ratios of literate individuals and unemployed 
individuals are significant. FH estimators can be obtained using the eblupFH() function of the sae 
package which implements the formula given in (24). As vector of response variables of the model, the 
vector is established of previously obtained direct estimations 𝐸̄𝐸�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷  or 𝐹𝐹�0𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷  as the case may be and, as 
variances 𝜓𝜓𝑑𝑑, the estimations of the sample variances var� 𝜋𝜋(𝐸̄𝐸�𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷) or var� 𝜋𝜋(𝐹𝐹�0𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷). The estimated MSEs, 
mse𝑃𝑃𝑃𝑃(𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹), are obtained by using the analytical formulae in Section V.A, for the REML method fit, 
and in R they are obtained using the mseFH() function from the previous package.  

The FH estimators of poverty incidence can assume the value zero (as can the direct estimators) 
in those domains where there are no individuals with incomes below the poverty line. Moreover, the 
MSEs estimated by means of the above analytical formula also assume the value zero. In these cases, 
we consider such FH estimates to be unreliable and, instead, we calculate synthetic estimators           
𝛿𝛿𝑑𝑑𝐹𝐹𝐹𝐹 = 𝒙𝒙𝑑𝑑′𝜷𝜷�. Their MSEs are obtained using the formula (6.2.14) of Rao and Molina (2015), replacing the 
REML estimator of the variance of the domain effects.  

Although the EBLUP based on the Fay-Herriot model does not require normality, the analytical 
approximation of the MSE obtained in this way does require normality. As we can see in the histogram 
and the q-q plot of normality for females (figure 11), the distribution of the direct estimators of mean 
income for the D=25 census tracts does not conform to a normal distribution, but it is not too far away 
either, bearing in mind that the number of observations used to construct the histogram (D=25) is small. 
For males, the graphs are similar. This is not the case for the direct estimators of non-extreme incidence 
of poverty (see figure 12). It should, therefore, be borne in mind that the estimated MSEs of these 
poverty incidences may not correspond to the facts. 

Finally, we obtain the Census EB estimators based on the individual-level model (38), using as 
response variable log ( income + 1000), where the addition of constant 1000 to income has been 
determined so that the histogram of the residuals of the fitted model is approximately symmetrical (see 
the histogram of the original income and of the income transformed in this way in Figure 13). As auxiliary 
variables at the individual level in 𝒙𝒙𝑑𝑑𝑑𝑑, we consider the indicators of activity status categories, age, and 
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years in education. Figure 14 for females shows an approximately linear increasing relationship between 
transformed earnings and age or years in education. The graph for males is similar. Since the 
transformation of earnings is monotonic, this relationship indicates that, as age or years in education 
increase, so do earnings. 

Figure 11 
Histogram (left) and q-q normality plot (right) of the direct estimators of mean income for                                               

the D=25   Montevideo census tracts, for females 
(Uruguayan pesos, year 2011) 

 

Source: Prepared by the author. 

Figure 12 
Histogram (left) and q-q normality plot (right) of the direct estimators of the non-extreme poverty incidence for 

the D=25 Montevideo census tracts, for females 
(In proportions) 

 

 
 

Source: Prepared by the author. 
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Figure 13 
Histogram of untransformed (left) and log (income + 1000) transformed (right) income for females 

(Uruguayan pesos, year 2011) 

 
 

Source: Prepared by the author. 

 

Figure 14 
Transformed income in comparison with age (left) and in comparison with years in education (right),  

for females 
(Uruguayan pesos – logarithmic transformation -, year 2011) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Prepared by the author. 

The Census EB estimators of poverty incidence 𝐹𝐹𝛼𝛼𝛼𝛼  based on the model with nested errors for 
transformed income are calculated using formulae (53) and (48), replacing 𝜽𝜽 by the estimator 𝜽𝜽�; in this 
case, we have used the REML estimator. Although, as seen in Example 7, the ebBHF() function of the sae 
package provides the EB estimators but no t the Census EB  estimators, if  the sample fractions  of   the                                     
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areas are small, we can use the same function to obtain approximate values of the Census EB estimators, 
setting the Xnonsample attribute of that function (matrix of values of the auxiliary variables for the out-
of-sample part of the population) equal to the matrix with the census microdata of those variables for 
all individuals in the tracts considered. In this case, it can be seen that the Census EB estimates and those 
obtained in this way show really small differences.  

The same fitted model is used to obtain the Census EB estimators of average earnings. The 
Census EB estimators of average earnings 𝛿𝛿𝑑𝑑 = 𝐸̄𝐸𝑑𝑑 based on this model are obtained in a similar way. 
Specifically, they are obtained as follows: 𝐸̄𝐸�𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑑𝑑−1 ∑ 𝐸𝐸�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶

𝑁𝑁𝑑𝑑
𝑖𝑖=1  where, taking into account that 

income 𝐸𝐸𝑑𝑑𝑑𝑑  is obtained as a function of the response variables in the model 𝑌𝑌𝑑𝑑𝑑𝑑  as follows:                                
𝐸𝐸𝑑𝑑𝑑𝑑 = exp (𝑌𝑌𝑑𝑑𝑑𝑑) + 1000, then 𝐸𝐸�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐸𝐸[exp (𝑌𝑌𝑑𝑑𝑑𝑑)|𝒚𝒚𝑠𝑠;𝜽𝜽�] + 1000. This expectation can be obtained 
using the Monte Carlo approximation (50) and implemented in the ebBHF() function, or by means of the 
analytical formula given in Molina and Martín (2018). In this case, this analytical formula has been used 
because it has practically no computational cost.  

The estimated MSEs of the Census EB estimators are obtained by means of a slight modification 
of the bootstrap procedure described in Chapter V (originally designed for the EB estimators), using.   
𝐵𝐵 = 500 bootstrap replications. The difference between the EB and Census EB estimators lies in the 
fact that ECH units cannot be identified in the census. Therefore, in each bootstrap replication, we 
cannot generate census vectors 𝒚𝒚𝑑𝑑

∗(𝑏𝑏), 𝑑𝑑 = 1, … ,𝐷𝐷, and take the part of the sample from them 𝒚𝒚𝑠𝑠
∗(𝑏𝑏). In 

the case of the Census EB estimators, we generate the bootstrap censuses 𝒚𝒚𝑑𝑑
∗(𝑏𝑏), 𝑑𝑑 = 1, … ,𝐷𝐷, using the 

values of the auxiliary variables of the census and, on the other hand, we generate the bootstrap      
sample vector 𝒚𝒚𝑠𝑠

∗(𝑏𝑏) using the values of the same auxiliary variables, but taken from the ECH. The true 
bootstrap values of the parameters are obtained from the generated bootstrap censuses,                         
𝛿𝛿𝑑𝑑

(𝑏𝑏) = 𝛿𝛿𝑑𝑑(𝒚𝒚𝑑𝑑
∗(𝑏𝑏)), 𝑑𝑑 = 1, … ,𝐷𝐷.  

Figure 15 
Histogram (left) and q-q normality plot (right) of the residuals of the model with nested errors 

 for transformed income, for females 
(In proportions) 

 
Source: Prepared by the author. 

The EB (or Census EB) method and the bootstrap procedure used are based on the normality 
hypothesis; it is, therefore, in this case, crucial to check if this hypothesis is verified, at least 
approximately. Figure 15 shows the histogram and q-q normality plot of the residuals from the model 
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fit for transformed earnings for females. Although real data hardly fits a model exactly, and any test will 
reject the null hypothesis of normality if the sample size is as large as it is in this case, we can see from 
these figures that the distribution is not too far from normal. If one wishes to use a distribution that fits 
income somewhat better, one can use the EB method based on a multivariate GB2 model such as the 
one proposed by Graf, Marín and Molina (2018). 

The detailed numerical results for each census tract are shown in tables 1-4 in the annex. Next, 
we analyse these results graphically and comment on the results obtained for the different          
estimators. Figure 16 shows the values obtained from the direct, FH and Census EB estimators, of mean 
income (left), and the estimated CVs of these estimators (right) for each census tract, for Females. 
Census tracts (axis 𝑥𝑥) are ordered from smallest to largest sample size and their sample sizes have been 
indicated on the axis labels 𝑥𝑥. We can see how the three estimators assume similar values, although the 
direct and FH estimators obtain practically the same values in this case. This is due to the fact that, when 
estimating average income, the sample sizes of the tracts are not excessively small, and the weight 
given by the FH estimators to the corresponding direct estimators is close to one. This is an advantage 
of estimators based on models with random effects. However, and although the sample sizes are 
moderate, as we can see in the chart on the right, the Census EB estimators are clearly more efficient 
than the direct and FH estimators for all census tracts. This is because they use a greater amount of 
information: the microdata from the census. For males (figure 17), we can draw similar conclusions.  

 
Figure 16 

Direct, FH and Census EB estimates (left) of average income, and CVs of the estimators (right) for the D=25 
census tracts of Montevideo, for females  

(Uruguayan pesos, year 2011) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Prepared by the author. 
Note: Census tracts (axis x) ordered from smallest to largest sample size, with sample sizes shown on the axis. 
 

For the poverty incidence, the estimates and mean squared errors for females and males are 
shown in figures 18 and 19 respectively. In this case we show MSEs instead of CVs because, in the case 
of ratios, for a fixed sample size, CVs increase as the ratio decreases; therefore, CVs are less meaningful 
as measures of estimation error, especially when the estimated proportions assume very small values, 
as is the case here. Once again, the values of the three estimators are similar for all census tracts except 
for those with the smallest sample size. In fact, in these tracts, the direct estimators for Females assume 
the (implausible) value of zero because there are no sampled individuals with incomes below the 
threshold. In fact, the estimated variances of the direct estimators also assume the value zero for these 
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tracts. Note that the estimated variances of the direct estimators are also based on the few observations 
sampled for each tract and gender. If we consider the direct estimators to be unreliable, their estimated 
variances are also unreliable. For domains with direct estimators equal to zero, the FH estimators and 
their MSEs are also theoretically zero. In such cases, as mentioned above, the synthetic estimators 
obtained from the same model have been used. We can observe in the figures on the right how the MSEs 
of the direct and FH estimators show large fluctuations. Note that the MSEs of the FH estimators are 
especially large for the domains where synthetic estimators have been used. In contrast, the MSEs of 
the EB estimators increase gently in relation to the sample size of the census tract. In addition to taking 
more reasonable values, the estimated MSEs of the EB estimators remain below the MSEs of the other 
two estimators for most census tracts. 

Figure 17 
Direct, FH and Census EB estimates (left) of average income, and CVs of the estimators (right) for the D=25  

census tracts of Mondevideo, for males  
(Uruguayan pesos, year 2011) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  
Source: Prepared by the author. 
Note: Census tracts (axis x) ordered from smallest to largest sample size, with sample sizes indicated on the axis. 

 
It should be stressed that model-based estimators can even provide estimates for unsampled 

areas, although this is not recommended since it is not possible to analyse the goodness-of-fit of the 
model for these areas. And, on the subject of goodness of fit, as stated above, for the incidence of        
non-extreme poverty, the normality hypothesis in the Fay-Herriot model is not verified. This is because 
the sample sizes are small for some of the tracts and the true poverty incidences appear to be quite 
small, with the result that the direct estimators have a markedly skewed distribution and the Central 
Limit Theorem is not verified. Although normality is not a requirement for obtaining the FH estimator, 
it is assumed for the estimation of the MSE using the analytical formulae considered in Section V.A and 
provided by the mseFH() function of the sae package. In fact, an additional drawback of the estimators 
obtained from this Fay-Herriot model is that they can result in negative values or values greater than 
one which, when it comes to ratios, is not suitable. A simple solution is to truncate the estimates to zero 
when they are negative and one when they exceed this value. Another possibility is to consider the 
regression model (19) for a bijective transformation of poverty incidence, 𝑔𝑔(𝐹𝐹0𝑑𝑑), which translates 
values from the space [0,1] to real values. However, the same transformation of the direct estimator, 
𝑔𝑔(𝐹𝐹�0𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷), need not be an unbiased estimator for 𝑔𝑔(𝐹𝐹0𝑑𝑑) and, therefore, the model (20) is not verified for 
𝑔𝑔(𝐹𝐹�0𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷). In this case, the FH model for 𝑔𝑔(𝐹𝐹�0𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷) would have an additional bias, unless one considers the 
model (20) for 𝐹𝐹�0𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷  together with the regression model above for 𝑔𝑔(𝐹𝐹0𝑑𝑑). In this case, the two models 
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considered cannot be summarised in a linear mixed model such as that given in (21), i.e., they are 
unmatched models. Estimators based on mismatched models of this type have been obtained by You 
and Rao (2002b) based on Bayesian inference.  

As we have seen, when we have auxiliary information at the individual level, the improved 
efficiency of the estimators that use this information is usually greater. However, both data sources 
from the same year have been used in this application. In those years where an updated census is not 
available, estimators based on individual-level models may provide somewhat biased estimates. In 
these cases, therefore, it is advisable to look for other sources of current data, such as administrative 
records. When there are no updated sources of data at the individual level, it is recommended to keep 
to area-level models. In some cases, aggregate data sources can be found at a lower level than the area. 
In that case, models for aggregate data could be used at that level, including two-fold subarea level 
models (see Torabi and Rao (2014)).  
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VII. Conclusions 

This paper has dealt with the problem of disaggregating statistical estimates in population areas or 
subgroups. Recommendations are given on the limitations of disaggregation of direct estimates and 
there is a description of basic indirect methods, as well as some more sophisticated ones, that can 
overcome these limitations. As has been seen throughout this paper, the methods to be used in each 
specific application depend mainly on the form of the indicator in question and on the type of auxiliary 
information available, as there are no universal methods that can be used for any available type of 
indicator or information. Thus, in each case, a study must be made of the potentially applicable 
methods, depending on the data requirements and assumptions that each method assumes. In 
applications that allow the use of various methods, the accuracy of the final estimators will depend on 
the extent to which the available auxiliary variables are good predictors of the variable being modelled 
in each case and the extent to which the corresponding assumptions are verified. 

It should not be forgotten that, while the most accurate estimates possible are demanded, their 
error measures (usually the mean square errors) must also be estimated as accurately as possible, or, at 
the very least, there must be no underestimation of these, so as not to provide an erroneously optimistic 
picture of the estimates obtained. As mentioned above, when producing estimates at the local level, 
the communities living in each area often have information (albeit subjective) about the plausible values 
of the indicators in question, and the estimates provided may contradict such local knowledge.             
Thus, it is always necessary to remind those who use statistical data that such data has a certain       
degree of error, and the error measurements accompanying these data should reflect the                         
actual errors made for each area. 

Well-extended methods for the estimation of the mean squared errors of the corresponding 
indirect estimators have also been included in this paper. However, no reference is made in this paper 
to error measures that might incorporate non-sampling errors, such as coverage errors, non-response 
errors, errors in the data, substitution of missing data, etc. These issues require further study within 
small area estimation. 
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Figure 18 
Direct, FH and Census EB estimates (left) of poverty rates, and MSEs of the estimators (right) for the D=25 

Montevideo census tracts, for females  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Prepared by the author. 
Note: Census tracts (axis x) ordered from smallest to largest sample size, with sample sizes indicated on the axis. 
 

Figure 19 
Direct, FH and Census EB estimates (left) of poverty rates, and MSEs of the estimators (right) for the D=25 

Montevideo census tracts, for males  
(In proportions) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Prepared by the author. 
Note: Census tracts (axis x) ordered from smallest to largest sample size, with sample sizes indicated on the axis. 
 

Nor should this paper be considered an exhaustive compendium of methods for disaggregation 
(or for error estimation), as there are a large number of methods not described due to limited space, 
(see Rao and Molina (2015) for a more complete description of most previously published methods). 
This paper has sought to provide an introduction to the subject in question, including the basic methods, 
in that they form the basis for the study of more advanced methods, including only a few of the more 
advanced methods that are designed for the estimation of indicators on living conditions. 
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Results of the estimation of average incomes and poverty rates  
in Montevideo 

Table A1 
Direct, FH and Census EB estimates of average income, mean squared errors and estimated coefficients  

of variation of each estimator, for each census tract in Montevideo, for females 
(In Uruguayan pesos) 

Tract 𝑛𝑛𝑑𝑑  
Direct FH Census EB 

Est var cv Est mse cv Est mse cv 

1 93 18 693.71 5 057 851.88 12.03 20 714.21 1 240 278.11 5.38 21 095.71 1 042 681.38 4.84 

2 56 13 277.12 4 664 014.87 16.27 12 804.17 2 589 382.73 12.57 14 721.23 1 423 595.65 8.10 

3 114 15 950.53 3 705 060.97 12.07 15 709.41 1 449 903.59 7.66 16 405.42 804 002.00 5.47 

4 172 21 964.73 3 420 289.14 8.42 22 818.88 1 222 004.22 4.84 23 513.94 685 803.09 3.52 

5 277 22 414.35 2 388 487.30 6.90 23 267.98 946 571.10 4.18 22 041.95 423 246.74 2.95 

6 179 23 313.57 4 128 976.00 8.72 25 010.83 1 352 338.30 4.65 25 195.60 703 110.23 3.33 

7 421 23 755.31 1 924 432.84 5.84 22 592.03 1 163 899.22 4.78 20 071.35 256 888.38 2.53 

8 312 16 154.17 1 263 151.79 6.96 17 851.16 736 152.51 4.81 18 028.97 321 051.60 3.14 

9 1 113 11 063.69 161 639.01 3.63 11 127.05 151 476.54 3.50 10 598.71 59 822.24 2.31 

10 3 482 22 823.33 230 630.51 2.10 22 817.42 209 158.99 2.00 20 764.66 24 042.91 0.75 

11 2 081 10 473.08 76 660.70 2.64 10 390.16 74 127.46 2.62 8 758.45 29 006.70 1.94 

12 1 216 19 519.30 419 289.74 3.32 19 251.93 347 714.08 3.06 18 123.74 75 945.76 1.52 

13 1 844 10 741.54 95 042.46 2.87 10 634.85 91 443.15 2.84 8 652.12 38 841.43 2.28 

14 792 21 514.74 790 097.23 4.13 21 340.52 560 681.72 3.51 19 518.73 113 098.81 1.72 

15 607 25 157.71 1 369 375.39 4.65 24 472.89 931 112.13 3.94 23 471.75 187 914.34 1.85 

16 960 7 748.40 84 359.99 3.75 7 817.03 81 443.96 3.65 8 592.14 68 306.77 3.04 

17 2 278 8 167.08 44 950.84 2.60 8 217.67 44 341.90 2.56 8 286.72 28 268.28 2.03 

18 2 227 34 942.88 746 573.51 2.47 34 893.09 656 698.10 2.32 33 015.11 64 575.27 0.77 

19 504 16 244.32 709 726.52 5.19 15 953.47 526 515.95 4.55 15 340.75 156 341.38 2.58 

20 1 402 12 724.70 168 612.47 3.23 12 758.27 158 968.95 3.13 12 436.10 65 960.74 2.07 

21 1 667 10 435.48 99 478.80 3.02 10 526.60 95 005.58 2.93 11 354.96 43 098.30 1.83 

22 1 073 14 104.97 272 183.12 3.70 14 011.56 248 767.70 3.56 13 370.10 82 132.18 2.14 

23 478 24 032.62 2 084 022.21 6.01 24 886.94 920 424.29 3.85 23 547.61 230 604.23 2.04 

24 1 521 28 948.32 822 681.41 3.13 28 302.65 588 417.88 2.71 26 395.05 74 187.48 1.03 

99 1 364 9 614.82 101 119.90 3.31 9 548.70 96 674.58 3.26 9 081.88 47 799.87 2.41 

Source: Prepared by the author. 
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Table A2 
Direct, FH and Census EB estimates of non-extreme poverty (in %), mean squared errors and estimated 

coefficients of variation of each estimator, for each census tract in Montevideo, for females 
(In Uruguayan pesos) 

Tract 𝑛𝑛𝑑𝑑  
Direct FH Census EB 

Est var Est mse Est mse 
1 93 0.00 0.0000 0.94 1.7750 0.50 0.2707 

2 56 0.00 0.0000 6.48 1.8817 2.24 1.0674 

3 114 1.68 1.3444 1.74 0.8148 1.51 0.4029 

4 172 0.00 0.0000 0.00 1.5588 0.30 0.2303 

5 277 0.00 0.0000 0.00 1.5516 0.42 0.1158 

6 179 0.00 0.0000 0.00 1.7350 0.20 0.1362 

7 421 1.39 0.3732 1.12 0.3327 0.58 0.0810 

8 312 1.06 0.3617 1.16 0.3075 0.98 0.1230 

9 1 113 4.99 0.4874 5.80 0.3948 6.21 0.0888 

10 3 482 2.41 0.0813 2.43 0.0786 0.55 0.0184 

11 2 081 11.40 0.6827 10.79 0.5181 10.55 0.0393 

12 1 216 0.88 0.0681 0.92 0.0662 0.90 0.0341 

13 1 844 12.85 0.9809 12.03 0.6817 10.97 0.0521 

14 792 1.80 0.2872 1.82 0.2580 0.70 0.0532 

15 607 0.20 0.0406 0.20 0.0403 0.29 0.0480 

16 960 9.75 0.9567 10.43 0.6890 11.09 0.1267 

17 2 278 11.97 0.5287 11.84 0.4425 12.28 0.0449 

18 2 227 0.27 0.0128 0.26 0.0127 0.06 0.0148 

19 504 0.69 0.1549 0.83 0.1450 1.72 0.0783 

20 1 402 6.64 0.5047 6.27 0.4047 3.83 0.0518 

21 1 667 5.61 0.3258 5.89 0.2824 5.08 0.0487 

22 1 073 4.30 0.4345 4.11 0.3600 2.89 0.0497 

23 478 0.00 0.0000 0.00 1.5526 0.29 0.0510 

24 1 521 0.17 0.0136 0.17 0.0135 0.17 0.0233 

99 1 364 10.98 0.8465 10.43 0.6014 9.65 0.0898 

Source: Prepared by the author. 
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Table A3 
Direct, FH and Census EB estimates of mean income, mean squared errors and estimated coefficients of variation 

of each estimator, for each census tract in Montevideo, for males 
(In Uruguayan pesos) 

Tract 𝑛𝑛𝑑𝑑  
Direct FH Census EB 

Est var cv Est mse cv Est mse cv 

1 74 24 836.71 11 478 551.50 13.64 23 153.44 2 192 630.31 6.40 25 762.01 1 516 931.82 4.78 

2 65 20 460.87 16 472 932.99 19.84 15 443.37 2 435 603.57 10.11 15 765.25 1 269 312.32 7.15 

3 72 14 298.89 4 973 475.40 15.60 17 664.10 1 405 480.47 6.71 16 069.72 1 460 721.97 7.52 

4 147 26 634.78 6 878 201.92 9.85 25 124.25 1 749 062.81 5.26 23 452.91 883 029.38 4.01 

5 218 23 222.64 3 977 409.63 8.59 24 597.89 1 109 370.86 4.28 21 535.17 568 700.05 3.50 

6 141 28 783.87 8 278 641.51 10.00 29 394.58 2 072 316.24 4.90 26 974.58 956 465.19 3.63 

7 343 25 127.32 2 855 763.61 6.73 25 322.16 1 257 216.13 4.43 20 211.77 353 216.26 2.94 

8 261 17 701.92 2 187 547.36 8.36 19 904.65 1 018 640.94 5.07 17 975.03 384 896.60 3.45 

9 1 032 11 475.41 190 257.67 3.80 11 517.36 174 746.99 3.63 10 253.44 84 239.24 2.83 

10 2 820 24 575.73 396 689.08 2.56 24 658.69 348 365.27 2.39 21 279.59 39 334.03 0.93 

11 1 882 11 079.86 99 418.16 2.85 10 975.09 95 447.04 2.81 9 008.44 42 747.93 2.30 

12 1 009 21 868.24 638 076.52 3.65 21 342.01 481 650.83 3.25 18 731.09 88 898.30 1.59 

13 1 712 10 897.03 106 703.48 3.00 10 766.13 103 066.30 2.98 8 566.47 44 008.29 2.45 

14 641 22 605.70 1 090 803.69 4.62 22 636.34 664 159.72 3.60 19 332.12 177 272.29 2.18 

15 509 28 797.75 2 175 732.47 5.12 27 945.27 1 339 582.93 4.14 23 540.89 232 540.09 2.05 

16 894 8 920.20 130 401.00 4.05 8 893.51 125 439.87 3.98 9 342.98 73 446.28 2.90 

17 2 095 8 749.60 58 161.78 2.76 8 830.39 57 265.48 2.71 8 402.07 37 470.56 2.30 

18 1 723 38 931.89 1 332 962.25 2.97 38 347.54 1 019 441.37 2.63 33 874.56 93 681.13 0.90 

19 417 17 855.77 1 230 524.64 6.21 17 640.61 755 965.09 4.93 15 893.35 237 964.08 3.07 

20 1 179 13 531.48 248 104.13 3.68 13 611.71 229 000.88 3.52 12 318.07 72 710.30 2.19 

21 1 498 11 147.80 132 574.18 3.27 11 290.17 125 020.79 3.13 11 380.39 65 707.49 2.25 

22 929 15 394.11 397 876.11 4.10 15 137.23 349 742.04 3.91 13 156.00 92 731.14 2.31 

23 392 27 941.71 3 640 071.50 6.83 28 804.90 1 294 705.53 3.95 23 483.98 321 582.84 2.41 

24 1 170 29 940.63 1 097 458.14 3.50 29 943.72 745 397.44 2.88 26 410.63 108 953.03 1.25 

99 1 241 10 230.59 130 610.91 3.53 10 227.46 124 563.28 3.45 9 379.01 67 878.14 2.78 

Source: Prepared by the author. 
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Table A4 
Direct, FH and Census EB estimates of non-extreme poverty (in %), mean squared errors and estimated 

coefficients of variation of each estimator, for each census tract in Montevideo, for males 
(In Uruguayan pesos) 

Tract 𝑛𝑛𝑑𝑑  
Direct FH Census EB 

Est var Est mse Est mse 
1 74 0.00 0.0000 0.00 2.3526 0.24 0.4195 

2 65 1.89 3.4599 4.06 1.4112 1.94 1.1930 

3 72 1.10 1.1480 0.82 0.8380 1.90 0.7071 

4 147 0.80 0.6193 0.30 0.5133 0.37 0.1798 

5 218 0.68 0.4522 0.66 0.3936 0.57 0.1535 

6 141 0.00 0.0000 0.00 2.3300 0.19 0.2299 

7 343 1.39 0.4707 1.27 0.4145 0.73 0.1259 

8 261 0.00 0.0000 1.89 2.0897 1.15 0.1482 

9 1 032 5.32 0.5585 6.04 0.4740 7.40 0.1099 

10 2 820 2.34 0.0959 2.38 0.0928 0.61 0.0233 

11 1 882 10.23 0.7013 9.86 0.5710 10.38 0.0589 

12 1 009 0.31 0.0312 0.34 0.0309 0.93 0.0605 

13 1 712 12.81 1.0956 11.88 0.8397 11.89 0.0636 

14 641 1.99 0.3835 2.09 0.3381 0.88 0.0724 

15 509 0.53 0.1388 0.50 0.1337 0.36 0.0644 

16 894 9.07 0.9783 9.60 0.7497 9.33 0.1292 

17 2 095 12.09 0.5981 11.83 0.5141 12.47 0.0419 

18 1 723 0.17 0.0134 0.16 0.0134 0.08 0.0199 

19 417 0.83 0.2247 0.98 0.2099 1.72 0.1449 

20 1 179 7.04 0.6212 6.60 0.5067 4.28 0.0596 

21 1 498 6.36 0.4374 6.47 0.3789 5.45 0.0606 

22 929 6.35 0.8152 5.60 0.6296 3.39 0.0734 

23 392 0.71 0.2482 0.73 0.2305 0.39 0.0902 

24 1 170 0.21 0.0209 0.22 0.0208 0.24 0.0355 

99 1 241 10.76 0.9442 10.44 0.7215 9.38 0.0935 

Source: Prepared by the author. 
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