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ABSTRACT

9
• *

Survival analysis o f  groups, particularly pairs, o f  related individuals has been receiving growing 

attention by biostatisticians, demographers, econometricians and other social scientists. In this article, 

an interpretation o f  the properties o f  bivariate li fe  table functions fo r  individuals who have common 

fra ilty  is provided. In particular, expressions fo r  the conditional li fe  expectancy— assuming that pairs 

o f  linked individuals fa ce  the same baseline hazard functions — fo r  three parametric duration models 

commonly used in demographic analysis, i.e., exponential, Weibull and Gompertz distributions are 

derived. The implications o f  assuming that frailty follow s a gamma or an inverse Gaussian 

distributions are discussed. This work illustrates that the pace at which improvements in the 

survivorship o f  one o f  the members o f  the pair translates into a higher mean duration o f  l i fe  is directly 

related to the variance o f  frailty and, more importantly, to the assumptions about its distribution.

K ey words: Bivariate survival analysis, random effects , kindred frailty, expectation o f  life .

2



1. INTRODUCTION

Survival analysis o f related or linked individuals has been receiving growing attention by 

demographers, economists and sociologists. For instance, recent studies of the determinants of infant 

and child mortality have explicitly accounted for the fact that the offspring o f the same woman share 

common unobserved or unobservable environmental or genetic factors that may affect their chances 

o f individual survival (Curtis, McDonald and Diamond, 1991; Guo and Rodriguez, 1991; Zenger, 

1991). Also in the mortality setting, Vaupel (1988) has studied the role that inherited frailty, i.e., a 

set o f susceptibles and risk factors that alter the chances o f death o f an individual at all ages, plays 

in explaining the correlation between life spans o f parents and their children. In addition, he has 

proposed to analyze the genetic and environmental components o f the longevity o f monozygotic twins 

(Vaupel, 1990a and 1990b). Other recent examples o f studies that have modelled the dependence 

between the lifetimes of twins are the work o f Hougaard, Harvald and Holm (1992) using Danish 

data, and the analysis by Guo and Grummer-Strawn (1992) on the determinants o f infant mortality 

among twins using survey data from low-income countries. Mare and Palloni (1988) studied couple 

survival data from the Panel Study of Income Dynamics to assess the socioeconomic effects on the 

mortality o f older individuals. In a different context, Larsen and Vaupel (1989) analyzed the pattern 

o f effective fecundity over age for Hutterite couples. Their analysis, however, is based on related 

events rather than individuals. Anderton et al. (1987) studied the intergenerational relationship of 

marriage and other fertility-related events utilizing proportional hazards models, arguing that 

"fertility behaviors transmitted through the family are behavioral propensities relative to prevailing 

social behavior". Another example is the work o f Haurin and Mott (1990) on adolescent sexual 

activity, who examined the influence o f an older sibling’s age at first sexual intercourse on the sexual 

initiation of a younger sibling.
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Based on the extensive work done by statisticians in constructing multivariate generalizations of 

the proportional hazards model (Clayton, 1978; Clayton and Cuzick, 1985; Cox and Oakes, 1984, 

Chapter 10; Holt and Prentice, 1974; Hougaard, 1986b; Oakes, 1982 and 1989), most o f the studies 

o f bivariate (or more generally, multivariate) survival analysis mentioned before have concentrated 

on testing and estimating an association parameter from a right-censored sample o f pairs o f life times, 

as well as the extent to which the estimates o f the coefficients of observed covariates included in the 

model vary with the introduction of frailty effects. However, there is little work on the interpretation 

o f the demographic properties o f multivariate life-table functions induced by common dependence 

on an unobserved random effect.

In this article, I attempt partly to fill this gap by exploring bivariate life table functions, in 

particular those conditional on the survival experience o f one of the members of the pair. The central 

objective is to discuss the demographic implications o f  the choice o f  a functional form for the 

distribution of the dependence o f the members of a pair on an unobserved (or not adequately 

observed) random effect, as well as o f the trajectory o f the hazard function. To the best o f my 

knowledge, there is little discussion of the demographic implication of these selections, with the 

exception o f  the work o f Vaupel and Yashin (1985a and 1985b), Trussell and Richards (1985), 

Montgomery and Trussell (1986) and Trussell, Rodriguez and Vaughan (in press) in the case of 

univariate survival analysis. In addition, general expressions are provided for the conditional hazard 

and survival functions, as well as for the conditional life expectancy, under the assumption that the 

heterogeneity in the susceptibility to experiencing an event —frailty  — follows a gamma or an inverse 

Gaussian distributions. These frailty models have been shown to be mathematically convenient, 

mainly because they are characterized by having the closure property, i.e., that the conditional 

distribution of frailty, given survival until a specific age or duration, is also gamma or inverse 

Gaussian but with a different scale parameter (Hougaard, 1984 and 1986a). This is an attractive 

attribute that I will utilize in the derivation o f the results. In particular, I obtain expressions for the
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conditional life expectancy—assuming that pairs o f linked individuals face the same baseline hazard 

functions — for three parametric duration models commonly used in demographic analysis, namely: 

exponential, Weibull and Gompertz distributions. Examples derived from published estimates for 

human populations will be used to illustrate the results. Finally, I explore the implications o f these 

findings in demographic research.

2. THE ASSOCIATION MODEL

2.1 Preliminaries

Let Tx and T2 denote the lifetimes o f individuals in a pair. Central to this work is the assumption 

that these individuals share a common set o f unobservable characteristics, z, or fra ilty  (Vaupel, 

Mantón and Stallard, 1979) which is distributed over non negative values o f z  with density function 

f ( z )  at the beginning o f exposure. Under the strong, but frequently used, assumptions that this 

common factor is lifetime-invariant and has no time-dependent effects, frailty is equivalent to 

relative risk in a proportional-hazard model (Ibid.). Hence,

A¡(t¡ I z) -  Aoi(t¡) z (1)

denotes the hazard function for the i-th member o f the pair. Although the baseline hazard Aoi(t¡) can

be allowed to have different specifications for the components of the duo, as suggested by Clayton

(1978), I will assume it equal.

Conditional on the common frailty z, the Tx are mutually independent, and hence imply that the 

(conditional) bivariate survival function takes the form

S d ^ m z ) - ^ ) ] 1^ ) ] '  (2)

It follows that the unconditional joint bivariate survival function is given by
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f (z )d z (3)

h
where AqO ^JA qCu)^!/ denotes the integral or cumulative baseline hazard for the i-th member o f

O

the couple.

2.2 The distribution of frailty

The specification of the distribution of the common factor z  is crucial to any analysis o f bivariate 

life tables because, as shown by Oakes (1989), it uniquely determines the functional form o f the 

association between the observed lifetimes o f the individuals in the pair. In other words, the 

specification o f the distribution o f the unobservable across the population o f  pairs (or mixing 

function), uniquely induces the degree o f dependence between T1 and T2.

The utilization o f a non-parametric, discrete probability distribution as a mixing function o f the 

underlying hazards is closely identified with the work o f  Heckman and Singer (1982 and 1984) on 

univariate survival analysis with unobservables. However, Vaupel used a two-point distribution in 

his analysis o f the correlation o f  the lifetimes o f fathers and sons (1988). Vaupel also employed a 

non-parametric distribution to determine when, in a clinical trial o f a new therapy, the experiment 

must stop if  there is evidence o f adverse consequences on the group receiving the treatment (1990a). 

More common, however, has been the utilization o f continuous functions. In particular, the gamma
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distribution — popularized by Vaupel et al. (1979) in demographic applications — has been favored 

because of the flexibility o f shapes offered, its parsimony, as well as its mathematical tractability 

[Clayton (1978), Oakes (1982), Clayton and Cuzick (1985), and others]. The inverse Gaussian 

distribution has also been advocated in the univariate analysis o f survival times with an unobserved 

covariate by Aalen (1988), Hougaard (1984 and 1986a) and, in the demographic context, by Vaupel 

and Yashin (1985a). Another continuous distribution frequently used in demographic applications, 

e.g., the study o f fecundability, is the beta distribution (Sheps and Menken, 1973, pp. 73-74; Keyfitz, 

1985, pp. 395-399; Heckman and Walker, 1990).

In this document, I will concentrate on the implications o f assuming that the heterogeneity in the 

shared unobserved characteristics follows a gamma or inverse Gaussian distributions among pairs of 

individuals. My interest on these distributions arises from the now common utilization of these 

distributions in modelling random effects in survival models.

2.2.1. The gamma distribution case

Assume that frailty z has a gamma distribution with density

fW -z '- ' ft f /m  (4)

so the mean is unity and the variance is o 2 = r¡'1. As long as the baseline hazard in (1) includes a

constant term, the assumption that mean frailty is one involves no loss o f generality.

It follows immediately from (3) and (4) that the joint bivariate survival function is given by

S(tv t2H l  ♦**( A0(t1) +A0 (t2))]-’» (5)
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From the conditional probability formula [ i.e., Pr(A|B) * Pr(A n B) /  Pr(B) ], and the expression 

for the marginal survival function

S0i)=.s(O4)^MMi +<T2A0(Or’’ (6)

(Oakes, 1989), it follows that the probability o f one member surviving to t2 given that the other 

member o f the pair has survived to tx, is

5(/2|/1)=fl+aJA0(t1)/(l+aJ(A0(/1)+A0(t2)))]’» . (7)

In addition, the conditional hazard function takes the form

+a2(̂ o(̂ l)+̂ o(̂ 2))] • (8)

Note that, unless there is no heterogeneity across the population (i.e., the variance o f frailty is 

zero at the beginning o f exposure), the conditional hazard decreases with respect to tx. For example, 

in the context o f familial survivorship, this implies that the age-specific rates for offsprings decline 

with increased survival time o f their predecessors. This is an interesting result because, as will be 

shown below, gains in the expectation of life of, say, the father, might translate into even greater 

improvements in life expectancy for the son.

As shown by Clayton (1978), and later confirmed by Oakes (1979), the selection o f a gamma 

distribution o f frailty uniquely implies that the association between survival times of the members 

o f a pair is constant for all durations. In other words, the measure o f the degree o f dependence, i.e., 

the ratio o f the hazard rate of the conditional distribution of T2, given Tx * tlf to that o f T2 given Tj 

> li.
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is constant (say, 6) across time.

** I ̂*1 “ ̂l) / ̂ (̂2 I > *1̂ (9)

Moreover, Clayton showed that

0 m i +I,*1- 1 + o* (10)

so that the variance o f frailty can be interpreted as a "component o f variance" (p. 146) o f survival 

times o f  the pairs o f individuals. Moreover, when there is no heterogeneity in the population, i.e., 

a2 -  0 , the association parameter 6 is unity, which implies that the lifetimes within pairs are 

independent. As argued by Vaupel ( 1990b), kindred-frailty models or models for related individuals, 

provide the "conceptual basis for dividing the heterogeneity among individuals into a frailty 

component and a residual component given by the distribution of lifetimes o f individuals with the 

same frailty" (p. 171).

Finally, an interesting result derived by Oakes (1989) relates the measure o f dependence, ff(tv  

t2) to Kendall’s coefficient o f concordance r (Kendall, 1938). For instance, in the case o f the gamma 

distribution,

* « ( l  + r ) / ( l - r )  ( 1 1 )

and, using the delta method or method o f statistical differentials (Namboodiri and Suchindran, 1987; 

pp. 115-116), its variance is given by

var(i) * 4 var(r) /  (1 -  r)4. (12)

These results provide an inferential procedure to assess the degree o f  association between pairs 

o f individuals, even from censored data1, directly from an easily interpretable measure, such as 

Kendall’s coefficient o f concordance. In other words, it is easy to test for independence between 

lifetimes using expressions (11) and (12). This simple test is achieved, o f  course, at the cost o f 

assuming that frailty is gamma-distributed among population pairs. If the null hypothesis is rejected,
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the issue is then the estimation o f the degree o f dependence between observations, which I briefly 

discuss below (see Section 3).

2.2.2. The inverse Gaussian distribution case

Now assume that frailty z  has an inverse Gaussian distribution with density

/ ( zH k/w)1/2e u z  _s/2e (13)

so that, without loss o f generality, the mean is unity and the variance is a1 * ( 2 k ) ' 1 .

From (3) and (13), the joint bivariate survival distribution is given by

and based on similar arguments as in the case o f the gamma distribution, it can be shown that the 

conditional survivorship function is given by

and the conditional hazard now takes the form

W a W -V 'iV H  ^ ( A ô + A oG,))]17* (16)
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Again, as in the case o f the gamma distribution, the conditional duration-specific rate for one 

member o f  the pair declines with increased survivorship o f other individual in the duo. If the 

lifetimes are independent, i.e., a2 ■ 0 , then the conditional hazard is identical to the baseline hazard.

As stated before, the specification o f an inverse Gaussian distribution o f frailty uniquely 

determines the functional representation o f  the dependence between lifetimes. Hence, in this case, 

i(tj,t2) is inversely related to the bivariate survivorship function, as shown by Oakes (1989). For 

instance, after some algebraic manipulation, the measure o f  association takes the form

i ^ i jW + a ’ ll^ A o C ^ + A o O j ) ) ] - 1/ 2 . (17)

This expression indicates, according to Oakes’s formulation (1989), that knowledge that an 

individual died at t2 increases the hazard for the other member o f the pair by a time-varying 

percentage to what it would be if  the other member had not failed at duration t2.

An alternative interpretation o f i(t1,t2) is possible by noting that the last term in equation (17) 

is equivalent to the expectation of frailty among survivors at t2 given that the other member of the 

pair survived to T2, i.e., E[ z | T2 > t2; Tx > tj ]. This is a generalization to the bivariate case of one 

o f the better-known results in unobserved heterogeneity for the univariate case (Sheps and Menken, 

1973; Vaupel, Mantón and Stallard, 1979; and Hougaard, 1984). Hence

0(tx,t2) = 1 + a2 E[ z I T2 > t2; Tx > tx ]. (18)

11



Note that this measure decreases from 1 + a2 when tx «  t2 *  0 — an identical expression as in the 

case o f the gamma distribution [c f. (10)]—to unity when both lifetimes approach infinity. Moreover, 

as a2 -* 0 , i(t1,t2) -+ 1 , which implies independence between the lifetimes.

To illustrate the discussion o f the expression derived above, as well as other results to be 

presented below, I have selected three parametric distributions — exponential, Weibull and Gompertz, 

which are commonly used in demographic research (Vaupel, 1990a; p. 160). The hazard and 

integrated hazard functions for these three parametric representations o f the baseline lifetime 

distribution for each o f the members of a pair are presented in Table I. The exponential distribution 

has been extensively used in studies o f human fecundability (Sheps and Menken, 1973; p. 73; Aalen, 

1987) and IUD expulsion (Aalen, 1987), whereas the Weibull and Gompertz distributions have been 

traditionally used to study mortality: cause-specific and total, respectively (Horiuchi and Coale, 1990; 

Mantón et al., 1981 and 1986). All these parametric functions correspond to extreme-value 

distributions (Kalbfleisch and Prentice, 1980; pp. 21-30), and their statistical properties are studied 

elsewhere (e.g. Sheps and Menken, 1973).

2.3 Illustration of the measure o f association 8(tv  tj) between survival times

A graphical representation o f 0(tls t2) is rendered in Figure 1 when the Gompertz trajectory 

(left-hand panel) and the Weibull distribution (right-hand panel) represent the underlying hazard 

function A0(t). The baseline hazard is supposed to be equal for both individuals in the pair. That is, 

the members o f the duo share the same underlying risk, as well as the same level o f frailty (cf. Section 

2.1). This assumption, although restrictive and possibly unrealistic, is based on the interest to 

illustrate, ceteris paribus, how 0 (tlt t2), as well as other results related to the conditional hazard and 

expectation of life (shown below), strongly depend on the assumption of the distribution of frailty 

among pairs.
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The values o f the parameters for these distributions were selected to resemble those reported by 

Mantón et al. (1986) in their analysis o f overall and cause-specific mortality in the United States using 

Medicare and National Center for Health Statistics (NCHS) data. For the Gompertz, a is equal to 

lxlO ' 3 for both members of the pair, and p  takes the value o f 0.05 for both individuals. The latter 

parameter represents the annual increase in the force o f mortality. For the Weibull distribution, 

which is commonly fit to lung cancer mortality data, a takes values o f 1.25xl0"5 for both individuals, 

and p is set equal to 2.45. The latter parameter represents the slope o f the logarithm of the cumulative 

hazard rate as a function o f the logarithm o f age. The parameters selected for both distributions 

represent approximately the mortality conditions o f the male and female cohorts born in high-income 

countries with an expectation o f life above age 70. The parameter a2 is assumed to take values 

between 0 — homogeneity — and 0.5 — high heterogeneity — with increments o f 0.05, values which 

researchers have assumed to encompass most situations to be encountered in human populations. Most 

empirical studies o f mortality suggest that a a2 value of 0.25 fits human mortality data reasonably well 

(Mantón et al., 1986; Mare and Palloni, 1988), although a recent study o f the mortality o f monozygotic 

and dyzogotic twins reveals that the variance o f frailty might be as high as 0.75 in human populations 

(Hougaard, Harvald and Holm, 1992; Table 5).

The bottom diagonal depicts the situation where the lifetimes of both individuals are 

independent, i.e., a2 = 0. When a2 > 0, i(tj, t2) remains fairly constant for the first 50 years o f life, 

thereafter rapidly declining towards unity in both distributions. This is the case when heterogeneity 

is high, so the rapid removal o f frail individuals at early durations causes the association parameter 

to approach unity very rapidly after age 60, as illustrated for the Gompertz distribution. Indeed, for 

both representations of the underlying hazard, the graphs indicate that the effect o f assuming an 

inverse Gaussian distribution rather than a gamma distribution will be reflected mainly among the 

older persons. As shown before [cf. Eq.(lO)], the association parameter remains constant at a value 

of 1 + o2 for all ages when frailty is gamma-distributed. The graph depicts clearly the magnitude of
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the departure from this constant value when frailty follows an inverse Gaussian distribution.

Unfortunately, there is no simple relation between the coefficient o f concordance r and 0(tx,t2) 

— the estimation o f r involves the evaluation o f an exponential integral function, £¡(x) (Gradshteyn 

and Ryzhik, 1980) — although Oakes (1989) proposed the ratio [0 (tx,t2) -  1] /  [0(tx,t2) + 1] as a

conditional (on tx and t2) version o f Kendall's r.

Note that the measure of association 0 (tv  t2) is independent o f the assumption about the baseline 

survival distributions when frailty is assumed to be gamma distributed, whereas this parameter 

depends on the functional representation o f A^tj) (i**l,2 ) when the common characteristic to the 

members o f the pair follows an inverse Gaussian distribution.

3. RESULTS ON CONDITIONAL HAZARD AND LIFE EXPECTANCY AT BIRTH

I next discuss some o f the demographic implications o f selecting a distribution o f frailty in

bivariate life table models. In particular, the interest is in studying the behavior o f the conditional 

hazard and life expectancy functions.

3.1 The conditional hazard function

The behavior o f A(t2 | tx) can directly be ascertained from equations (8 ) or (16), given that the 

common frailty follows either a gamma or an inverse Gaussian distribution. As mentioned before, 

the hazard rate for one member o f the pair declines with increasing survivorship o f  the other member. 

However, this rate o f change depends on the assumption made about the distribution o f frailty. For
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instance, by taking derivatives o f the conditional hazard function with respect to t1 in (8 ) and (16), 

the following expressions are obtained

V ' i )  V * * ) / ! 1 +*r2(A0(t1) +Ao(t 2))]J (19)

and

+2aa(A0(/x)+A0(/2))] (20)

for the gamma and inverse Gaussian distributions, respectively. Note that the pace o f decline is 

determined by the assumption about the distribution o f  frailty. The specific form o f the derivatives 

depends on the selection o f the functional form of the underlying hazard function.

In Figure 2 , 1 present the conditional hazard A(t2|tx) and its derivative with respect to tx under 

the assumption that the underlying hazard follows a Gompertz distribution, and frailty is distributed 

either as a gamma or as an inverse Gaussian distribution (left- and right-hand panels, respectively). 

The values o f the parameters for the Gompertz distribution are the same as those used in Figure 1. 

The parameter a1 also takes values between 0 and 0.5 with increments o f 0.05, for both distributions 

o f frailty. This assumption implies that takes values between 2 and »  for the gamma distribution, 

and K ranges between 1 and °° for the inverse Gaussian distribution.

The situation when lifetimes are independent — so that the conditional hazard is equal to the 

underlying hazard A0(t2) — is depicted by the first line from the left. When the variance o f frailty 

becomes positive, the conditional hazard A(t2 | tx) is always lower than A0(t2) for all values of tx. 

However, the departure is evident only at older ages. This can be seen from the derivative o f the 

conditional hazard with respect to tx, shown in the lower panels o f Figure 2. As stated before, this
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function is always negative when o* > 0  and increases (in absolute terms) with increases in 

heterogeneity. The largest impact o f changes in tx on the conditional hazard occurs for ages above 

60 years. Note also that the assumption that frailty follows a gamma distribution implies a slower 

pace o f decline than when this distribution is an inverse Gaussian curve. The same situation arises 

when the underlying hazard is assumed to follow a Weibull distribution (not shown). Hence, because 

o f the common influence shared by the members o f the pair, improvements in the survivorship of one 

induces a smaller reduction in the hazard o f the other member under the assumption that frailty 

follows a gamma distribution rather than an inverse Gaussian distribution.

Overall, the previous analysis implies that improvements in the mortality o f  one o f the members 

of the pair may translate into higher expectations o f life at birth for the other associate. This is 

discussed below.

3.2 The conditional expectation of life at birth

The expectation o f life at birth is obtained by integrating the conditional survival function [cf. 

equations (7) or (15)],

e m t J ^ S t e t J d u  . (21)
O

The solution to this integral can be greatly simplified if the results are presented in terms of the 

three parametric distributions discussed before. The conditional expectation o f life at birth for the 

two distributions o f frailty (i.e., gamma and inverse Gaussian distributions) and the distributions o f 

the underlying lifetimes in the pair (i.e., exponential, Weibull and Gompertz functions) are reported
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in Table II. As is clear from the results shown, the formulae for estimating the conditional 

expectation o f life become quite cumbersome, in particular when heterogeneity is represented by the 

inverse -  Gaussian distribution. The evaluation o f several o f the integrals reported would require the 

utilization o f numerical methods.

However, it is still possible to interpret these expressions. For instance, use o f the closure 

property o f the distributions o f frailty, 2 Bayes’s theorem and the conditional probability formula 

reveal that the conditional expectation o f  li fe  at birth has the same form  as does the ( cohort)  

expectation o f  li fe  in the univariate case8 but with a different scale parameter. For instance, this 

takes the form r¡* = r¡+ A0(t1)) for the gamma distribution; and k -  k + A0(t1) for the inverse Gaussian 

distribution (see Table II). These parameters are a function o f the survival time o f the other member 

o f the pair, more specifically, the cumulative (baseline) hazard function. Moreover, the mean is 

different from unity for both distributions.4 These results imply that the conditional expectation of 

life is equivalent to mixing a baseline life expectancy at birth (i.e., exponential, Weibull or Gompertz 

distributions) among those with frailty z*, i.e., e0(z*), with a distribution o f heterogeneity which is 

either gamma with parameters r¡ and r¡*, or inverse Gaussian with parameters k and k . In general,

(22)
O

where g(z*|t1) is the density function o f frailty given that the other member o f the pair survived to

Instead o f attempting to offer a general interpretation o f the behavior o f the conditional 

expectation o f life as the lifespan o f one o f the members o f the pair varies, I will illustrate the 

discussion with a specific example — the case when the underlying hazard follows a Weibull



distribution and frailty is gamma or inverse Gaussian distributed (see Figure 3). The parameters for 

the Weibull distribution are a * 1.25 x 10' 6 and /9= 2.45, as in the example presented in Figure 1.

As anticipated, improvements in the survival o f  one o f the members o f the pair translates, in 

most instances, into larger increases in life expectancy for the other associate. However, the 

magnitude of the impact o f prolonged survivorship depends on both the level o f heterogeneity shared 

by the members o f the pair and, prominently, by the distribution of frailty. For instance, if the 

common (unobserved) characteristic is assumed to follow a gamma distribution among the members 

of the population (upper panel), only when both heterogeneity assumes atypical values (i.e., a2 >  0.3) 

and one o f the members o f the pair has survived to age 80 or higher the conditional life expectancy 

increases as the other individual survives to older ages. If the distribution o f frailty follows an inverse 

Gaussian distribution, however, the conditional life expectancy rapidly increases as the other 

individual survives to ages 60 years or older. For instance, when a2 * 0.25 and the lifespan of the 

first individual reaches the age of 60, the second member of the group is expected to survive to about 

age 80 years. This is not necessarily the case when the distribution o f heterogeneity has a lower 

variance (i.e., below 0 .1 0 ); in this case a longer lifespan for one o f the individuals does not necessarily 

translate into a higher expectation o f  life at birth for the other member o f the duo. Still, as shown 

in Figure 4, the difference between the conditional life expectancy when frailty follows an inverse 

Gaussian distribution and when frailty is gamma distributed — for a given level o f heterogeneity — 

is quite startling and increases the longer is the lifespan of the first individual in the pair. Finally, 

note that the rate of improvement in life expectancy also depends on the parameters o f the underlying 

hazard function.

The explanation of these patterns lies in the fact that the (conditional) probability distribution 

of the lifespan of one o f the members o f the pair is the weighted average o f the distributions across 

frailty levels with weights given by the probability density functions selected, i.e., that o f the gamma
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or inverse Gaussian distributions. Because the inverse Gaussian distribution has a longer tail than the 

gamma distribution, surviving individuals are more homogeneous (with regard to their own frailty) 

when the former distribution is used to model the common characteristics o f the individuals. This 

implies that individuals with higher longevity are more frequently found when the inverse Gaussian 

distribution is adopted than when the gamma distribution is assumed. Overall, for a given level of 

heterogeneity, the choice of the inverse Gaussian distribution to represent the dispersion o f frailty 

instead of a gamma distribution may imply substantial gains in life expectancy for one member of 

the pair given the survival time o f the other member of the duo.

3. ESTIMATION

Although estimation of the parameters o f the models presented above goes beyond the objective 

o f this work, it is important to mention the estimation methodologies that have been proposed.

Clayton (1978) provided an expression to estimate 8 — the measure of association between 

survival times — by maximum likelihood when frailty is gamma-distributed and when a parametric 

representation is assumed for the baseline hazard. He also discussed a method to estimate 8 when the 

analyst is unwilling to make parametric assumptions concerning the baseline function. Oakes (1982) 

examined the inference of the association measure after reparametrizing Clayton’s model, provided 

expressions for the log-likelihood function and the information matrix, reviewed Clayton’s method 

when the baseline hazards are completely unknown, and proposed as an alternative a non-parametric 

estimator based on Kendall’s coefficient o f concordance. Hougaard (1986b) used maximum likelihood 

methods to estimate the bivariate exponential and Weibull models (as particular cases o f a more 

general multivariate model) assuming a special case o f the inverse Gaussian distribution.5 In all three 

instances, inference about the association parameter 8 is used to test the hypothesis o f  independence
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o f the lifetimes of the members o f the pair. Finally, Vaupel (1990a) proposed a general expression 

for the likelihood function o f related or kindred lifetimes obtained by integrating the frailty 

distribution. This formulation is very elegant because the entire history o f survival data on grouped 

individuals (combining death times and censoring times) can be summarized by three statistics based 

on the hazard function and the number o f deaths: namely, the total log-hazard at observed death 

times, the total cumulative hazard, and the number o f deaths. Vaupel’s method can be used with a 

parametric representation for the baseline hazard and a wide range o f frailty distributions, including 

the gamma and inverse Gaussian cases. However, Vaupel does not offer an interpretation of the 

parameters o f the model in terms of the association function.

Considerable work has been done when the assumption about the parametric representation of 

the baseline hazard is relaxed to adopt Cox’s semi-parametric representation o f the baseline hazard 

(Cox, 1972), as well as to estimate the parameters o f observable covariates. Holt and Prentice (1974) 

discussed the cases when uncensored and censored observations were available, but they did not make 

explicit assumptions about the distribution o f frailty nor about the properties o f  the measure o f 

association 6. They also compared their results with those for the exponential and Weibull 

distributions. Clayton and Cuzick (1985) developed a method for testing and estimating the 

association parameter from right-censored sample pairs using only the rank-order information under 

the assumption that frailty follows a gamma distribution. Their expressions for the likelihood 

function seem to be quite cumbersome. More recently, Guo and Rodriguez (1991) proposed the 

utilization o f the EM algorithm (Dempster, Rubin and Laird, 1977) to estimate a multivariate hazard 

model also under the assumption that the heterogeneity among the individuals follows a gamma 

distribution, as well as when frailty is represented by a two-point non parametric distribution. They 

argue that use o f the EM algorithm greatly simplifies the expressions that result from the direct 

extension of Clayton’s method for the bivariate hazard model to the multivariate case.
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4. IMPLICATIONS FOR DEMOGRAPHIC RESEARCH

Although it is certainly encouraging that recent demographic analyses o f related individuals or 

events have modelled their shared dependence via an unobserved (or not adequately observed) random 

effect, it is judicious to ponder the implications o f  adopting an analytical framework that Vaupel has 

designated as frailty modelling (1990b). As several demographers have highlighted, theories and 

empirical findings of, say, biologists (in the context o f mortality) are critical in the construction of 

frailty models, an exercise that consists o f determining the functional forms to be used for both frailty 

distributions and hazards functions (Trussell and Rodriguez, 1990; Vaupel, 1990b; Weiss, 1990). Very 

often, it is mathematical convenience more than biological, social or economic reality that dictates the 

assumptions made. For instance, the postulate that frailty is gamma distributed is now a basic staple 

o f multivariate hazard and frailty models due to the flexibility and mathematical tractability o f this 

distribution.

In this paper I have exhibited one aspect o f the consequences o f imposing a specific trajectory 

to the distribution o f the (unobserved) characteristic shared by individuals in a group, that has not 

yet received enough attention. This work illustrates how the selection o f  specific distributions of 

frailty induces a specific functional form to a measure o f association between lifetimes, an important 

result due to Oakes (1989). For instance, the choice o f a gamma distribution to represent unobserved 

heterogeneity implies that the ratio o f the conditional hazard for one member of the pair at t2 given 

that the other member died at tx to the conditional hazard given that the other member o f the 

survived at least to age tx is constant at all durations. In contrast, the selection o f an inverse Gaussian 

distribution, implies that the measure o f association is a function of the bivariate survivorship 

function and, consequently, o f the parametric representation assumed for the underlying force of 

mortality. Additional work may be needed on elucidating the form of 0(tlf t2) when discrete 

distributions o f frailty, e.g. Poisson, binomial or N-point distributions, are selected. For some of
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these distributions, which have a finite probability that a pair’s frailty is zero, the model ensures 

infinite survival, a feature desirable in applications where events do not affect everyone (Oakes, 1989; 

Vaupel, 1990a). The discrete distributions are now regularly in use by econometricians in analyses 

o f (univariate) survival data (e.g. Berhman, Sickles and Taubman, 1990) and, as properly noted by 

Vaupel (1990a), can be applied to situations "where individuals can be divided into discrete groups 

(...) and estimates are needed o f the relative risk o f each group".

I have also discussed the properties o f bivariate life table functions conditional on the survival 

experience of one o f the members o f the pair. In particular, under the assumption that pairs of 

individuals share lifetime invariant frailty and have the same underlying risk o f experiencing an 

event, the survival model implies that improvements in life expectancy for one of the members o f the 

pair frequently translate into larger gains for the other group member. The pace of improvement 

depends, primarily, on the assumption about the distribution o f unobserved heterogeneity across the 

population and, secondarily, on the chosen trajectory for the underlying hazard function. The 

implications of this result should be carefully pondered when applying frailty models to the study of 

bio-demographic or socio-economic issues. For instance, in the context o f teenage pregnancy, if 

intergenerational transmission o f fertility-determining behavior occurs within the family (Anderton 

et al., 1987; Kahn and Anderson, 1992), a random-effects bivariate survival model implies that if a 

group o f mothers had a teenage pregnancy, then their daughters would be more likely to become 

pregnant during their adolescence than the daughters whose mother or sibling delayed their first 

pregnancy until the early thirties, ages when the population is very heterogeneous in regard to their 

propensity to have a teenage pregnancy. This is an important caveat for those researchers who utilize 

frailty models to study socio-economic processes. An equivalent argument can be made about the 

transmission of longevity or a genetic trait between parents and offspring, between twins, or between 

related events such as unemployment spells.
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Although the knowledge of a person’s life span provides fairly weak information about the 

person's susceptibility to experiencing death (Vaupel, 1988), the lifespan for an individual is of 

considerable importance for the other member of the pair, as shown before. The results, however, 

should be expected to be highly sensitive to the assumptions made on how to model the unobserved 

or unobservable characteristics shared by the members o f the pair. Even when the variance o f frailty 

is low, the assessment of the impact o f prolonged lifespans on life expectancy is heavily dependent 

on the distribution o f heterogeneity across the population.

Whereas the modelling of the distribution of frailty seems to render a firmer research basis to 

those interested in studying bivariate survival distributions, the results in this paper make it difficult 

to see how strong confidence can be placed on any a priori choice of the distribution o f frailty 

without a sound theoretical basis. If the issue is then to acquire additional information on this prior, 

we may well have to go beyond the realm of survival analysis to support the selection.
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Table I. Hazard and integrated hazard functions for baseline failure time models.

Model Hazard Integrated Hazard

A0(t) V * )  ■ To V y )  dy

Exponential a at a > 0

Weibull at* ' 1 a,/3> 0

Gompertz ae** ae*/ p a.jfl > 0
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Table II. Conditional expectation of life at birth, for two distributions of frailty
and three parametric models o f failure.

Model
Gamma Distribution*

Exponential

Weibull F ~ \ n */a)y(r¡ ~7)-1r(7)- I t

where 7  = /J' 1

Gompertz

Exponential

where .2F1 is a Gauss Hypergeometric function and B(a,b) is a Beta function.

Inverse Gaussian D istribution

<*~le (kk )1/2(k/w)1/2[2(íc//c*)_3/4/:_3/2(2(/cíc*)1/2)]
where K u is a Bessel function.

Weibull lX7)(̂ 1'YaY)"1(«/’r)1/̂ 2(KK*)1/2[2(«/>c*)i/2̂ i(2(«K*)1/2)] 
where 7  »  /T1 and 5 = -  (1/2 + 7 ) and K¿ is a Bessel function.

Gompertz

where E¡ is an Exponential Integral function.

*n*  = r¡ + AoCti). The density function is f(z) = z 0' 1 e '1̂  tjv /F(t/) with mean 1 and variance a2 = rj'x.

b k - k + Af/t,). The density function is h(z) = ( k / j t ) 1 / 2 e2K z"3/ 2 e‘ K(I+1/ 1) with mean 1 and variance
o2 = (2k)'1.

26



REFERENCES

Aalen, 0 .0 . (1988). Heterogeneity in Survival Analysis. Statistics in M edicine 7: 1121-1137.

Aalen, 0 .0 . (1987). Two Examples of Modelling Heterogeneity in Survival Analysis. Scandinavian 
Journal o f  Statistics 14: 19-25.

Anderton, D.L., N.O. Tsuya, L.L. Bean and G.P. Mineau (1987). Intergenerational transmission of 
relative fertility and life course patterns. Demography 24: 467-480.

Behrman, J.R., R.C. Sickles, P. Taubman (1990). Age-specific death rates with tobacco smoking and 
occupational activity: sensitivity to sample length, functional form, and unobserved frailty. 
Demography 27: 233-250.

Clayton, D. (1978). A model for association in bivariate life tables and its application in 
epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65: 141-151.

Clayton, D. and J. Cuzick (1985). Multivariate generalizations of the proportional hazards model 
(with discussion). Journal o f  the Royal Statistical Society, Series A, 148: 82-117.

Cox, D.R. (1972). Regression models and life tables (with discussion). Journal o f  the Royal Statistical 
Society  B 34: 187-220.

Cox, D.R. and D. Oakes (1984). Analysis o f  Survival Data. Chapman and Hall: London.

Curtis, S., J.W. McDonald and I. Diamond (1991). Random-effects models for birth intervals effects 
on infant mortality in Brazil. Paper presented at the 1991 PA A Meeting, Washington, DC.

Dempster, A.P., N.M. Laird and D.B. Rubin (1977). Maximum likelihood from incomplete data via 
the EM algorithm (with discussion). Journal o f  the Royal Statistical Society B 39: 1-38.

Gradshteyn, I.S. and I.M. Ryzhik (1980). Tables o f  Integrals, Series and Products. Academic Press: 
San Francisco.

Guo, G. and G. Rodriguez (1991). Estimating a Multivariate Proportional Hazards Model for 
Correlated Risks via the EM Algorithm, with an application to Child Survival in Guatemala. O ffice  
o f  Population Research Working Paper 91-12. Forthcoming in the Journal o f  the American Statistical 
Association.

Guo, G. and L. Grummer-Strawn (1992). Child Mortality among Twins from DHS Countries. Paper 
presented at the PAA Meeting, Denver, CO.

Haurin, R.J. and F.L. Mott (1990). Adolescent Sexual Activity in the Family Context The Impact 
o f Older Siblings. Demography 27: 537-557.

Heckman, J. and B. Singer (1982). Population heterogeneity in demographic models. In 
Multidimensional Mathematical Demography, edited by K. Land and A. Rogers. Academic Press: New 
York.

27



Heckman, J. and B. Singer (1984). A method for minimizing the impact o f distributional assumptions 
in econometric models for duration data. Econométrica 52: 231-241.

Heckman, J. and J. Walker (1990). Estimating Fecundability from Data on Working Times to First 
Conception. Journal o f  the American Statistical Association 85, pp. 283-294.

Holt, J. and R.L. Prentice (1974). Survival analysis in twin studies and matched pair experiments. 
Biometrika 61: 17-30.

Horiuchi, S. and A.J. Coale (1990). Age patterns o f  mortality for older women: an analysis using the 
age-specific rate o f  mortality change with age. Mathematical Population Studies 2: 245-267.

Hougaard, P. (1984). Life table methods for heterogenous populations: distributions describing the 
heterogeneity. Biometrika 71: 75-83.

Hougaard, P. (1986a). Survival models for heterogenous populations derived from stable distributions. 
Biometrika 73: 387-396.

Hougaard, P. (1986b). A class of multivariate failure time distributions. Biometrika 73: 671-678.

Hougaard, P., B. Harvald, and N.V. Holm (1992). Measuring the Similarities Between the Lifetimes 
o f Adult Danish Twins Born Between 1881-1930. Journal o f  the American Statistical Association 87: 
17-24.

Kahn, J. and K.E. Anderson (1992). Intergenerational Patterns o f Teenage Fertility. Demography 
29: 39-57.

Kalbfleisch, J.D. and R.L. Prentice (1980). The Statistical Analysis o f  Failure Time Data. John Wiley: 
New York.

Kendall, M.G. (1938). A New Measure o f Rank Correlation. Biometrika 30: 81-93.

Keyfitz, N. (1985). Applied Mathematical Demography. Second Edition. New York: Springer-Verlag.

Larsen, U.M. and J. Vaupel(1989). Frailty models o f Hutterite fertility. Working paper W P-89-09-1, 
Center for Population Analysis and Policy, University o f Minnesota.

Mantón, K.G., E. Stallard, and J. Vaupel (1981). Methods for Comparing the Mortality Experience 
of Heterogeneous Population. Demography 18: 389-410.

Mantón, K.G., E. Stallard, and J. Vaupel (1986). Alternative models for the heterogeneity of 
mortality risks among the aged. Journal o f  the American Statistical Association 81: 635-644.

Mare, R.D. and A. Palloni (1988). Couple models for socioeconomic effects on the mortality o f older 
persons. Paper presented at the 1987 Annual Meeting o f the Population Association o f America, 
Chicago. Also in Center for Demography and Ecology 88-7. University of Wisconsin-Madison.

Montgomery, M. and J. Trussell (1986). Models o f marital status and childbearing, pp. 205-270 in 
Handbook o f  Labor Economics, Volume 1, edited by O. Ashenfelter and R. Layard. Elsevier Science 
Publishers: New York.

28



Namboodiri, K. and C.M. Suchindran (1987). L ife  Table Techniques and Their Applications. 
Academic Press: Orlando.

Oakes, D. (1982). A model for association in bivariate survival data. Journal o f  the Royal Statistical 
Society, Series B, 44: 414-422.

Oakes, D. (1989). Bivariate survival models induced by frailties. Journal o f  the American Statistical 
Association 84: 487-493.

Sheps, M.C. and J.M. Menken (1973). Mathematical M odels o f  Conception and Birth. University of 
Chicago Press: Chicago.

Trussell, J. and T. Richards (1985). Correcting for unmeasured heterogeneity in hazard models using 
the Heckman-Singer procedure, pp. 242-276 in Sociological M ethodology 1985, edited by N. Tuma. 
Jossey-Bass: San Francisco.

Trussell, J. and G. Rodriguez (1990). Heterogeneity in demographic research. In Convergent Issues 
in Genetics and Demography, edited by J. Adams, D. Lam, A. Hermalin, and P. Smouse. New York: 
Oxford University Press: London.

Trussell, J., G. Rodriguez and B. Vaughan. Union Dissolution in Sweden, In Demographic 
Applications o f  Event-History Analysis, edited by J. Trussell, R. Hankinson and J. Tilton. Clarendon 
Press: Oxford (in press).

Vaupel, J. (1988). Inherited Frailty and Longevity. Demography 25: 277-287.

Vaupel, J. (1990a). Kindred Lifetimes: Frailty models in Population Genetics. In Convergent Issues 
in Genetics and Demography, edited by J.Adams, A. Hermalin, D. Lam and P. Smouse. Oxford 
University Press: New York.
Vaupel, J. (1990b). Relatives’ Risks: Frailty Models o f Life History Data. Theoretical Population 
B iology 37: 220-234.

Vaupel, J., K.G. Mantón, and E. Stallard (1979). The impact o f heterogeneity in individual frailty 
on the dynamics o f mortality. Demography 16: 439-454.

Vaupel, J. and A. Yashin (1985a). The Deviants Dynamics o f Death in Heterogeneous Populations. 
In Sociological M ethodology 1985, edited by N. Tuma. Jossey-Bass: San Francisco.

Vaupel, J. and A. Yashin (1985b). Heterogeneity’s ruses: some surprising effects on selection on 
population dynamics. American Statistician 39: 176-185.

Weiss, K.M. (1990). The Biodemography o f Variations in Human Fertility. Demography 27:185-206.

Zenger, E. (1991). Heterogeneity among Families in Neonatal Mortality and Birth Interval in Matlab, 
Bangladesh. Paper presented at the PAA Meeting, Washington, DC.



NOTES

1. In the case o f censored data, Cox and Oakes (1984, p. 161) suggest to modify the 
Kendall’s coefficient o f concordance by counting only definite concordances and definite 
discordances.

2. Hougaard (1984) showed that the closure property applies to all distributions o f the 
exponential family, to which both the gamma and inverse Gaussian distributions belong.

3. Also derived under the assumption that heterogeneity is gamma or inverse Gaussian 
distributed (Vaupel et al., 1979; Hougaard, 1984, 1986; Aalen, 1988; Vaupel, 1988).

4. For a gamma distribution with parameters a and 0 , r(a,/3), the mean is equal to a//3 and 
the variance is given by a//32 (Vaupel et al., 1979). Whereas for the inverse Gaussian with 
parameters y  and S, N '( y , i ) ,  the mean is given by ( 6 /y ) 1̂ * and the variance by 1/2 S1̂  y ' s ^ 2 

(Hougaard, 1984).

5. Specifically, when y = 0 and S = 1/4, which has mean equal to «> (Hougaard, 1984; p. 
78).
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