

NACIONES UNIDAS CONSEJO ECONOMICO Y SOCIAL

LIMITADO CCE/SC.5/DRIE/IV/6/Rev.1 Febrero de 1977

ORIGINAL: ESPAÑOL

COMISION ECONOMICA PARA AMERICA LATINA
COMITE DE COCPERACION ECONOMICA
DEL ISTMO CENTROAMERICANO
SUBCOMITE CENTROAMERICANO DE
ELECTRIFICACION Y RECURSOS HIDRAULICOS
Grupo Regional de Interconexión Eléctrica (GRIE)

Cuarta reunión Panamá, Rep. de Panamá, 24 a 26 de febrero de 1977

RESULTADOS PRELIMINARES DEL ESTUDIO DE INTERCOMEXION ELECTRICA
DEL ISTMO CENTROALERICAMO

(Evaluación de los beneficios globales de la interconexión)

INDICE

		<u>Página</u>
Res	umen	v
1.	Objet ivo	1
2.	Alternativas consideradas	1
3.	Hipótesis del estudio	3
4.	Resultados obtenidos con la metodología SIPSE	10
5.	Resultados obtenidos con el modelo WASP	19
6.	Resultados obtenidos con el modelo Global de Selección de Inversiones (MGI)	26
7.	Conclusiónes generales sobre los resultados obtenidos con las tres metodologías	33
Ane	<u>xos</u>	
1.	Parámetros principales utilizados en los procesos efectuados con la metodología SIPSE	A-1
2.	Modelo Nacional de Inversiones. Resultados de los estudios de definición de los medios de generación	A-15
3.	Aplicación del programa de cálculo del valor económico de una central hidroeléctrica (NOTA AZUL)	A-26
4.	Programas de obras obtenidas como resultados de la aplicación del Modelo WASP	A -28
5.	Resultados de la aplicación del Modelo Global de Selección de Inversiones (MGI) a los países del	
	Istmo Centroamericano	A-31

RESUMEN

Se presentan los resultados preliminares de los estudios realizados para evaluar los beneficios derivados de una interconexión eléctrica entre los países del Istmo Centroamericano.

Para ello se comparan los costos de abastecimiento de las demandas eléctricas del Istmo durante el período 1980-1999 bajo tres alternativas diferentes:

- A. <u>Países aislados</u>. En ella cada país optimiza el desarrollo de su sistema y la operación del mismo sin considerar ningún tipo de interconexión.
- B. <u>Sistema Regional con Desarrollo Integrado</u>. En ésta se supone que todos los sistemas están interconectados entre sí y que la planificación y operación de los mismos se realiza en forma de optimizar el conjunto.
- C. <u>Sistema Regional con Desarrollo Independiente</u>. Esta alternativa supone que cada país, al igual que en la alternativa A, planifica en forma independiente el desarrollo de su sistema, pero al existir interconexión entre ellos, la operación de los mismos se optimiza en conjunto.

Se utilizaron en el estudio tres métodos diferentes:

- i) Metodología "Sistema Integrado de Planeación de Sistemas Eléctricos", SIPSE (CFE, México; EdF, Francia).
 - ii) Modelo Global de Selección de Inversiones, MGI (ENDESA, Chile).
- iii) Modelo "Wien Authomatic System Planning Package", WASP (Agencia Internacional de Energia Atômica).

La aplicación de la metodología SIPSE se hizo en forma detallada a fin de estimar los beneficios globales de la interconexión. La formulación del programa MGI tuvo por objeto formar los siete modelos y probar su funcionamiento para el caso del istmo centroamericano. La operación del modelo WASP se realizó con miras a establecer sus virtudes para los procesos de operación detallada de los sistemas que se efectuarán en la continuación del estudio. Los resultados de estos dos últimos modelos se aprovechan para corroborar las conclusiones generales obtenidas con la metodología SIPSE.

Los resultados generales de la aplicación de los modelos muestran:

i) que la forma más económica de abastecer las demandas del Istmo es la
alternativa B, cuyos ahorros con respecto al abastecimiento aislado superan los 500 millones de dólares (valor presente) con cualquiera de las
tres metodologías mencionadas; ii) que sólo la operación conjunta de los
sistemas desarrollados aisladamente (alternativa C) produciría ahorros
globales que oscilan entre 200 y 500 millones de dólares, según la metodología utilizada.

A los beneficios mencionados debe restarse el costo de construcción y operación de la red de transmisión que no alcanzaría, en todo caso, los 100 millones de dólares.

Las cifras estimadas hasta el momento pueden modificarse en la medida que se cuente con informaciones básicas más completas, actualizadas y precisas. Sin embargo es razonable suponer que las conclusiones generales del estudio seguirán siendo válidas.

La magnitud de las cifras señaladas hacen recomendable continuar la realización de este estudio con las etapas de definición de los beneficios a nivel de países y de justificación económica de las redes de interconexión.

1. Introducción

Este informe tiene por objeto presentar una estimación preliminar de los beneficios globales derivados de eventuales interconexiones eléctricas entre los países del Istmo Centroamericano.

La base de la evaluación económica es la comparación de los costos de abastecimiento del desarrollo aislado de los sistemas de cada uno de los países del Istmo y los correspondientes al sistema regional con distintos grados de integración, que se detallan más adelante.

En cada caso se estudió la solución de costo mínimo mediante tres metodologías diferentes: 1) metodología SIPSE, de la cual se utilizaron principalmente los modelos CONCENTRABLE y MNI; 2) modelo WASP, y

3) modelo Global de Selección de Inversiones.

El análisis de los sistemas aislados con la metodología SIPSE fue efectuado por representantes de las empresas eléctricas del Istmo, asignadas a las oficinas de la CEPAL en México; mientras las alternativas de interconexión con dicha metodología fueron estudiadas por la CEPAL. En ambos se contó con la colaboración de la CFE (México). La aplicación del modelo WASP fue realizada por un grupo BID-BIRF-CEPAL. La adaptación y aplicación del modelo MGI se efectuó en la CEPAL con la colaboración a tiempo completo de un especialista de la ENDESA (Chile). El análisis comparativo entre los modelos se presenta en documento aparte. 4/

2. Alternativas consideradas

Con el fin de apreciar el rango en el cual cabe esperar que se encuentren los beneficios de la interconexión se han adoptado las siguientes variantes de desarrollo de los sistemas eléctricos del Istmo que podrían considerarse extremas dentro de un esquema de integración eléctrica:

^{1/} Véase Método de planeación integral para sistemas eléctricos de potencia (CFE) (CCE/SC.5/GRIE/III/DI.2), mayo de 1976.

^{2/} Véase Wien Automatic System Planning Pachage (WASP) - An Electric Utility
Optimal Generation Expansion Planning Computer Code (CCE/SC.5/GRIE/IV/DI.2).

^{3/} Véase Modelo Global de Selección de Inversiones (MGI) para los sistemas eléctricos del Istmo Centroamericano (CCE/SC.5/GRIE/IV/5).

^{4/} Análisis comparativo de las metodologías SIPSE, WASP y MGI para su aplicación en el Istmo Centroamericano (CCE/SC.5/GRIE/IV/4).

a) Alternativa A. Países aislados

En esta alternativa no se consideran interconexiones 4/ y sirve de referencia para la estimación de beneficios.

b) Alternativa B. Sistema regional con desarrollo integrado

En esta variante se supone que los sistemas eléctricos siguen su desarrollo aislado sólo hasta 1984, a base de los proyectos ya programados para los sistemas de generación. Se supone una planificación regional de las nuevas instalaciones a partir de 1984 y su operación conjunta (desde 1981), optimizándose de esta forma un sistema único. Esta separación en dos períodos se justifica por el hecho de que el tiempo de construcción de los proyectos hidroeléctricos es de cinco a seis años, de modo que es difícil realizar cambios en la programación antes de 1984.

Los resultados preliminares indicaron que en esta alternativa los países deficitarios en recursos hidráulicos tienden a ser abastecidos desde los países que cuentan con proyectos hidroeléctricos atractivos, lo cual los lleva a cierto grado de dependencia. Por este motivo se ha creído conveniente plantear una subalternativa en la cual las transmisiones se limitan a una fracción de la demanda del país (por ejemplo, 20%) que se ha denominado: Alternativa Bl. Sistema regional con desarrollo integrado y transmisiones limitadas.

c) Alternativa C. Sistema regional con desarrollo aislado

En esta opción se respetan los programas nacionales de adiciones de generación definidos por optimización de los sistemas aislados durante todo el período del estudio, mientras que la operación se optimiza en forma conjunta desde el inicio.

^{4/} No se consideró la interconexión existente entre Honduras y Nicaragua.

3. <u>Hipótesis del estudio</u>

La mayor parte de las informaciones básicas utilizadas se detallan en informes anteriores. Sin embargo, a continuación se sintetizan las principales bases del estudio.

a) <u>Período estudiado</u>

و فرم دا در

El período en estudio comprende los años 1981 al 1999. Dentro de ese lapso se caracterizaron distintos subperíodos en los modelos utilizados, según se detalla a continuación.

• (Modelo MNI	
<u>Período</u>	Años	Año medio
1	1981-1983	1982
2	1984-1983	1985
3	1987-1989	1988
4	1990-1994	1992
5	1995-1999	1997
	Modelo WASP	
<u>Periodo</u>	Años	
1981-1995	Año por año	,
1996-1999	Igual al año 1995	
	Modelo MGI	· · · · · · · · · · · · · · · · · · ·
<u>Período</u>	<u>Años</u>	Año característico
1	1984-1986	1986
2	1987-1989	1989
3	1990-1994	1994
4	1995 1999	1999

^{5/} Véase el documento: Avance del estudio de interconexión eléctrica en el Istmo Centroamericano. Sistema interconectado (CCE/SC.5/GRIE/III/5), mayo de 1976.

b) Demandas

El estudio de las demandas máximas por países y para el Sistema Integrado Regional (SIR) fueron objeto de un análisis detallado. Sus resultados se indican en el cuadro 1. La curva de carga del sistema integrado se obtuvo por integración de las curvas de los seis países, observando los factores de diversidad deducidos del estudio mencionado. La energía demandada, que se indica en el cuadro 2, se obtuvo por integración de las curvas de duración de la demanda.

c) Precios de combustible

Los precios se basaron en el costo de 11.50 dólares por barril que prevalecía a mediados de 1974, con aumentos estimados de 3.5% anual (o duplicación del precio en 20 años).

d) Sistemas existentes al inicio del estudio (1980)

La configuración supuesta para los sistemas al año 1980 (inicio del estudio) está basada en informaciones proporcionadas por los propios países. La oferta de energía hidráulica, tanto para los sistemas aislados como para el SIR se estudió mediante el Modelo CONCENTRABLE y sus resultados se detallan en un documento presentado a la tercera reunión del GRIE, 7/2 y en un informe presentado por los delegados centroamericanos que participaron en el estudio. En el cuadro 3 se señalan las instalaciones existentes, por países, para 1980, año de inicio del estudio.

e) <u>Inventario</u> de recursos propios

i) Recursos geotérmicos. Los datos sobre energía geotérmica disponible en la región se basaron en un informe de consultoría para el

^{6/} Véase Proyecto de Interconexión Eléctrica del Istmo Centroamericano.

Determinación de las demandas máximas del Sistema Regional Integrado,

(SRNE/76/6), agosto de 1976.

^{7/} Véase Avance del Estudio de Interconexión Eléctrica en el Istmo Centroamericano. Sistemas Nacionales. Volumen II. Modelo CONCENTRABLE, (CCE/SC.5/GRIE/III/4), mayo de 1976.

^{8/} Véase Avance del Estudio de Interconexión Eléctrica en el Istmo Centroamericano. Sistema Interconectado, (CCE/SC.5/GRIE/III/5), mayo de 1976.

^{9/} Avance del Estudio de Interconexión Eléctrica en el Istmo Centroamericano.

Sistema Interconectado. Revisión del programa de expansión eléctrica a
base de energía geotérmica en el Istmo Centroamericano, 1975-1985,

(CCE/SC.5/GRIE/III/5/Add.1); mayo de 1976.

Cuadro 1
SISTEMA REGIONAL INTEGRADO: PREVISION DE DEMANDAS MAXIMAS POR PAISES Y TOTAL, 1980 A 2000
(MW)

	Guatemala	El Salvador	Honduras	Nicaragua	Costa Rica	Panamā	Total	Demanda total ^a
1980	329	337	162	256	446	397	1 937	1 743
1981	365	370	184	295	487	436	2 137	1 923
1982	405	405	209	326	532	479	2 356	2 120
1983	450	444	238	361	581	527	2 601	2 341
1984	500	487	271	. 394	635	581	2 868	2 581
1985	556	530	299	431	693	645	3 154	2 839
1986	618	578	330	472	757	716	3 471	3 124
1987	686	630	3 64	518	827	798	3 823	3 440
1988	762	687	401	568	903	890	4 211	3 790
1989	847	749	442	615	986	993	4 632	4 169
1990	940	812	488	663	1 077	1 105	5 085	4 577
1991	1 034	882	538	714	1 176	1 241	5 585	5 026
1992	1 138	956	593	769	1 285	1 401	6 142	5 528
1993	1 251	1 038	655	829	1 403	1 565	6 741	6 067
19 9 4	1 377	1 125	722	893	1 533	1 761	7 411	6 670
1995	1 515	1 222	797	962	1 674	1 972	8 142	7 328
1996	1 666	1 326	879	1 063	1 328	2 207	8 969	8 072
1997	1 832	1 438	969	1 117	1 997	2 472	9 825	8 843
1998	2 016	1 560	1 069	1 203	2 181	2 768	10 797	9 717
1999	2 218	1 693	1 179	1 296	2 382	3 099	11 867	10 680 %
2000	2 439	1 828	1 301	1 396	2 602	3 471	13 037	11 733 G

a/ Se reduce por el factor de diversidad.

Cuadro 2

DEMANDA ANUAL DE ENERGIA POR PAISES PARA AÑOS CARACTERISTICOS

(GWh)

•		1982			198	5 	, ,	1988	والمتعادية والمتعاددة		1992			1997
Guatemala	2	192			3 00!	5	4	121		6	153		9	908
El Salvador	2	036			2 65:	3	3	461		4	795		7	209
Honduras	1	231			1 75	5	2	355		3	486		5	692
Nicaragua	1	870			2 48	7	3	306		4	557		6	085
Costa Rica	2	357			2 982	2	3	771		5	157		7	630
Panamá	2	677			3 61	L	4	936		7	75 8		13	65 5
<u>Total</u>	12	363		1	6 49:	3	21	950		31	906		50	179
Crecimiento anual medio en el período (%)			10.1	L		10.0			9.8			9.5		

Cuadro 3

INSTALACIONES EXISTENTES AL INICIO DEL ESTUDIO

D	<u>droeléctrico</u>		Termoeléctrico						
Potencia Genera	Generación ,	Total	Potencias en MW						
(MW)	media (GWh) a/	lotar	Geotérmico	Vapor	Diesel	Turbinas a gas			
100	C 13	0.40	20	11/	10	05			
183	541	243	30	110	12	85			
231	1 078	212	90	6 3		. 59			
123	601	66	-	-	36	30			
94	335	285	100	171	-	14			
421	2 256	138	-	10	50	78			
237	1 069	224	-	172	40	12			
1 289	<u>5 980</u>	1 168	220	<u>532</u>	138	<u>278</u>			
	183 231 123 94 421 237	183 641 231 1 078 123 601 94 335 421 2 256 237 1 069	183 641 243 231 1 078 212 123 601 66 94 335 285 421 2 256 138 237 1 069 224	183 641 243 30 231 1 078 212 90 123 601 66 - 94 335 285 100 421 2 256 138 - 237 1 069 224 - 1 289 5 980 1 168 220	183 641 243 30 116 231 1 078 212 90 63 123 601 66 - - 94 335 285 100 171 421 2 256 138 - 10 237 1 069 224 - 172 1 289 5 980 1 168 220 532	183 641 243 30 116 12 231 1 078 212 90 63 - 123 601 66 - - 36 94 335 285 100 171 - 421 2 256 138 - 10 50 237 1 069 224 - 172 40 1 289 5 980 1 168 220 532 138			

a/ Estimaciones de acuerdo a procesos del modelo CONCENTRABLE.

período 1975-1985 y en informaciones propias de los países para el resto del período. Según estas, la potencia total desarrollable en los 19 años de estudio alcanzará a 1 380 MW. distribuida como se indica a continuación:

POTENCIA GEOTERMICA DESARROLLABLE

(MM)

Período	Total	1981-83	1984-85	1987- 89	1990-94	1994-99
Guatema1a	270	tin.	60	90	90	30
El Salvador	21 0	60	60	90	-	-
Honduras	-	-	•	•	-	-
Nicaragua	690	50	-	60	280	300
Costa Rica	150	-	•.	30	120	, -
Panamā	60	-	600	-	30	30

ii) Recursos hidroeléctricos. Los recursos hidroeléctricos identificados en el áreas se han clasificado en dos tipos: 1) proyectos que tienen características técnicas y costos con cierto grado de definición y para los cuales se ha supuesto que pueden ser desarvollados en el período 1984-1989, y 2) los proyectos que están sólo identificados y no cuentan con antecedentes de costo. Para estos últimos se ha establecido que sólo podrán ser construidos en el período 1990-1999. El detalle de proyectos identificados alcanza a 46 con una potencia total de 18 000 MW --50% desarrollable en el primer período-- y energía generable estimada en 43 000 GWh. El desglose de los proyectos por países se presentó en una publicación especial 10/ y se resume a continuación:

Estudio de Interconexión Eléctrica del Istmo Centroamericano. Capacidad hidroeléctrica desarrollable considerada en el estudio del Sístema Regional Integrado (SRNE/76/77), spetiembre de 1976.

CAPACIDAD HIDROELECTRICA DESARROLLABLE POR PAISES 11/(NW)

According to the second se	Total	1984-1989	1990-1999
I.C.A.	17 964	9-169	8 795
Guatemala	2 481	2 481	•
El Salvador	907	907	•
Honduras	2 308	2 308	-
Nicaragua	2 360	380	1 980
Costa Rica	8 296	1 481	6 815
Panamā	1 612	1 612	• .

f) Parametros econômicos

Los principales parametros económicos utilizados en el estudio, tales como:

- Costos de inversión de centrales hidroeléctricas
- Costos de inversión de centrales termoeléctricas
- Costos fijos de operación y mantenimiento de centrales
- Rendimiento de centrales termoeléctricas

fueron determinados mediante informes de consultoría $\frac{12}{}$ y se resumen en uno de los documentos de la Tercera Reunión del GRIE $\frac{13}{}$.

La tasa de actualización empleada en todos los estudios descritos en este informe es de 12%; para el cálculo de los intereses intercalares se utilizó 9%.

Anexo 2: Costos de proyectos hidroeléctricos en el Istmo Centroamericano

Anexo 2A: Curvas de costos de obras de proyectos hidroeléctricos

Anexo 3: Características y costos de centrales termoeléctricas en el Istmo Centroamericano

Anexo 4: Características de producción de las centrales eléctricas existentes y programadas, descripción de los proyectos hidroeléctricos y datos hidrológicos básicos por país.

13/ Avance del estudio de interconexión eléctrica en el Istmo Centroamericano. Sistema interconextado, op. cit.

Representa solo aquella parte de los recursos disponibles que han sido identificados como proyectos.

^{12/} Avance del estudio de interconexión eléctrica en el Istmo Centroamericano.

Sistema interconectado (CCE/SC.5/GRIE/III/5), mayo de 1976

4. Resultados obtenidos con la metodología SIPSE

a) Generalidades

Los fundamentos de la metodología SIPSE se detallan en informes anteriores $\frac{14}{}$ y su comparación con otras metodologías utilizadas en este estudio se presenta en un informe separado $\frac{15}{}$. En la etapa de definición de medios de generación se utilizaron los modelos llamados CONCENTRABIE, MNI y NOTA AZUL.

El anexo l incluye los parámetros principales que se emplearon en los procesos efectuados con esta metodología. En el anexo 2 se presentan, con algún detalle, los resultados obtenidos en los procesos de optimización para los sistemas aislados y las dos alternativas de interconexión mencionadas. En el anexo 3 se resumen las conclusiones de la aplicación del programa de cálculo del valor económico de una central hidroeléctrica (NOTA AZUL) a los proyectos del Istmo.

A continuación se presenta un resumen de los resultados de la aplicación de la metodología SIPSE que tiene por objeto servir de base a la estimación de los beneficios. Las alternativas a que éstos se refieren son las definidas en la sección anterior y se han designado como:

- A. Países aislados
- B. Sistema Regional con Desarrollo Integrado 17/
- C. Sistema Regional con Desarrollo Independiente

b) Adiciones de potencia requeridas

Las instalaciones de generación resultantes del modelo MNI se detallan en el cuadro 4. Las potencias totales adicionadas en las tres alternativas no son significativamente diferentes, aunque la alternativa B requiere menores adiciones.

Método de Planeación Integral para Sistemas Eléctricos de Potencia (CCE/SC.5/GRIE/III/DI.2) y Avance del Estudio de Interconexión Eléctrica en el Istmo Centroamericano. Sistema interconectado (CCE/SC.5/GRIE/III/5.

^{15/} Análisis comparativo de las metodologías SIPSE, WASP y MGI para su aplicación en el Istmo Centroamericano (CCE/SC.5/GRIE/IV/4).

^{16/} Con el modelo MNI no es posible representar.

 $[\]frac{17}{4}$ Con el modelo MNI no es posible representar la alternativa Bl.

Cuadro 4

ADICIONES DE POTENCIA REQUERIDAS POR ALTERNATIVA, 1981-1999

(MW)

		Polege	aislados	•					regional	chiquing manylines age y groups (), is not so to	T with the first will be the statement of the	
Péríodo					De	sarrollo	integrad	0	Desarrollo independiente			
	Geotérmic	otra térmica térmica		Total	Geotérmica	a Otra térmica	Hidro	Total	Geotérmica	Otra térmica	Hidro	Total
1 (1981-1983)	110	2	948	1 060	110	2.	948	1 060	110	2.	948	1 060
2 (1984-1986)	120	14	767	901	120	-	560	680	120	14	7 67	901
3 (1987-1989)	263	179	1 201	1 643	280	-	880	1 160	263	1 7 9	1 201	1 643
4 (1990-1994)	531	593	1 998	3 122	510	-	2 519	3 029	531	593 _]	1 998	3 122
5 (1995-1999)	360	1 854	1 517	3 731	600	-	3 890	4 490	360	1 854	1 517	3 731
Total								* * * * * * * * * * * * * * * * * * *				
1981-1986	230	16	1 715	1 961	230	2	1 508	1 740	230	16	1 715	1 961
Porcentaje	13		87	100	13	-	87	100	13	- :	87	100
1981-1999	1 384	2 642	6 431	10 457	1 620	2	8 797	10 419	1 384	2 642	6 431	10 457
Porcentaje	13	25	62	100	16	-	84	100	13	25	62	100

Las instalaciones termoeléctricas no geotérmicas en esta última alternativa son prácticamente nulas mientras que las de la alternativa A (y C) alcanzan a 2 600 MW.

c) Resultados de la operación

En el cuadro 5 se muestra el origen de la energía generada. Se observa que la energía geotérmica se aumentó en más de 10 000 GWh para las alternativas de desarrollo independiente y que la energía termo-eléctrica convencional se reduce en unos 158 000 GWh en la alternativa B y 34 000 GWh en la C. La generación hidroeléctrica consecuentemente resulta mayor en dichas alternativas en 73 000 GWh para la B y 36 000 GWh para la C.

Aun en el corto plazo 1981-1984 se observan ahorros importantes de generación térmica de las alternativas B y C frente a la A: 7 000 GWh para la primera y 7 400 GWh para la segunda.

d) Costos de las alternativas

Los costos de las alternativas se señalan en el cuadro 6. El costo total actualizado de la alternativa B es el más bajo de los tres, 1 780 millones de dólares frente a 2 500 millones de la alternativa A y 2 050 millones de la C. Los ahorros en inversión son de 100 millones de dólares para la opción B y nulos para la C. Los ahorros en operación llegan a 600 millones de dólares para la variante B y 460 millones para la C.

Si se analiza el período que se ha llamado de corto plazo se observa que los ahorros en inversión de la alternativa B frente a la A son de 200 millones de dólares, y los ahorros en operación, de 240 millones de dólares para la B y 250 millones para la $C.\frac{19}{}$

e) <u>Definición de un programa de obras para la alternativa de desarrollo integrado</u>

El Modelo Nacional de Inversiones no considera proyectos hidroeléctricos específicos. En consecuencia, para definirlos en la alternativa B se

^{18/} Se adoptó un factor de planta más alto.

^{19/} Cifras preliminares.

Cuadro 5

RESULTADOS DE LA INTODOLOGIA SIPSE. GENERACION RESULTANTE POR TIPO DE CENTRALES Y POR ALTERNATIVAS (SIPSE), 1981 A 1999

(GWh/aflo)

							Alterna	tivas					
		^^.	Paises	aislados		В.		a regiona	1		tema reg		
Periodo	Año medio	Geater⇔	Otra	Hidro	Total	The second secon	rrollo i	ntegrado		Actual Company of the Part of	The second second second	dependien	te
		nica	térmica		20002	Geoter- mica	Otra térmica	Hidro	Total	Geoter⊶ mica	Otra térmica	Hidro	Total
1	1982	1 853	2 434	8 076	1 2 3 63	1 82	1 237	9 303	12 363	1 824	1 137	9 302	12 363
2	1985	2 464	2 396	1 1 633	16 493	2 407	1 218	12 868	6 493	2 185	1 128	13 180	16 493
3	1988	3 568	2 407	1 5 975	21 950	3 590	1 317	17 043	21 950	2 934	906	18 110	21 950
4	1992	5 769	2 990	23 147	31 906	4 840	893	26 1 73	31 906	4 925	1 141	25 840	31 906
5	1997	9 076	8 563	32 540	50 179	7 122	1 023	42 034	50 179	9 975	6 072	34 132	50 179
Totales								-					
1981-198	6 a/	12 951	14 490	59 1.27	86 568	12 690	7 365	66 513	86 568	12 027	7 095	67 446	86 568
Porcen	tajes	15	17	68	100	1.5	9	76	100	14	8 .	78	100
1981 -199	9.	97 880	79 476	385 487	562 843	83 270	20 896	458 677	562 843	95 329	45 878	421 636	562 843
Porcent	ajes	17	14	69	100	15	4	81	100	17	8	75	100

a/ Sin actualizar.

Cuadro 6

RESULTADOS DE LA METODOLOGIA SIPSE COSTOS TOTALES DE DESARROLLO A LARGO PLAZO POR ALTERNATIVAS (Millones de dólares)

Período			Total	Sistema Regional Desarrollo integrado Período Total			Sistema Regional Total Desarrollo independiente Período		
-	Inversion	Operación		Inversión	Operación		<u>Inversión</u>	Operación	
1 (1981-83)	968.5	213.6		967.3	100.5		968.5	100.5	
2 (1984-86)	731.6	234.0		538.8	111,2		731.6	101.8	
3 (1987-89)	1 305.8	265.7	-	966.6	139.2		1 305.8	90.8	
4 (1990-94)	2 642.3	647.1		2 487.7	112.1		2 642.3	212.6	
5 (1995-99)	2 904.7	2 172.1		3 664.8	158.9		2 904.7	1 370.4	
Costo total actualizado	2 809.5	885.2	2 502.5ª/	2_709.0	285.5	1 979.5ª/	2 809,5	428.7	046.0 ^a

a/ Descontando el valor de rescate de las instalaciones.

estudiaron varias opciones de programas de obras por medio de la metodología de evaluación de centrales hidroeléctricas denominada NCTA AZUL. Mediante este programa se valorizan los aportes del proyecto al sistema utilizando como productos los aportes de potencia, energía en la base y energía en el pico. Los resultados de la aplicación del programa a todas las centrales con costos definidos se incluyen en el anexo 3. Como puede advertirse, los beneficios relativos varían bastante. Ello se debe a los diferentes grados de definición que tienen los proyectos. Pese a este inconveniente se preparó una alternativa de programa de obras que llenan los requerimientos del modelo MNI. Esta alternativa deonminada TRES, incluye para el primer período los proyectos propuestos para el desarrollo aislado de los sistemas y para los cuatro restantes proyectos seleccionados de entre los más económicos (que tienen mayor beneficio relativo) cuidando que se repartan, dentro de cada período en forma uniforma en los países del Istmo.

El programa de obras correspondiente, incluyendo instalaciones termoeléctricas se indica en el cuadro 7.

La definición de los programas de los países aislados se efectuó con un proceso similar al indicado, llegándose a determinar las instalaciones que se señalan en el cuadro 8.

Cuadro 8 (Conclusión)

Pais	1982	1985	1988	1992	1997
		II. <u>Ge</u> o	térmico (MW)		
Gu ate mala	-	60	90	90	% 3 0
El Salvador	60	60	90	-	-
Honduras	•	-	-	-	-
Nicaragua	50	esu	60	2 80	300
Costa Rica	•	-	-	30	-
Panamā		-	-	30	30
		III. Turb	oina a gas (MV)		
Guatemala		•	-	30	90
El Salvador	•	-	50	75	100
Honduras	•	-	-	-	
Nicaragua	-	-	·· • • • • • • • • • • • • • • • • • •	75	25
Costa Rica	-	-	· •	-	-
Panamá	-	-	50	174	349
		IV. <u>Têrmi</u>	ićo vapor (M)		
Guatemala	-	••	-	150	200
El Salvador	-	••	. -	50	300
Honduras	•••	-	- :	-	•
Nicaragua	-	-	-	-	-
Costa Rica	-	-	- .	-	-
Panamá	••		.	_	667

a/ Sobreequipo.

f) Conclusiones

- i) Potencia instalada. La potencia total instalada en la alternativa B de desarrollo integrado, es levemente menor que en las otras variantes, pues en este caso la potencia hidráulica es mayor, lo que indica que resulta econômico sobreequipar para utilizar la energía hidráulica. El desarrollo del sistema integrado se hace sobre la base de agregar solo potencia hidráulica; en tanto los países aisladamente agregan un 14% de potencia térmica (sin considerar la geotómia).
- ii) <u>Energía generada</u>. La energía térmica generada en la alternativa A es la más alta de las tres opciones (14%). La hidráulica es mayor en la alternativa B ya que la operación conjunta permite aprovechar mejor este tipo de energía. Esta misma alternativa es la que registra menor generación termoeléctrica (4%).
- iii) Consumo de combustible. Consecuentemente a lo anterior, la alternativa B presenta el menor consumo de combustible, cerca de 6 700 millones de galones menos que la alternativa A. El ahorro de la C llega a 5 000 millones frente a la A.
- iv) <u>Costo total del programa</u>. El costo total más bajo es el de la alternativa B, pues llega a 1 980 millones de dólares frente a 2 500 millones en la A y 2 040 millones en la C.

5. Resultados obtenidos con el modelo WASP

a) Planteamiento del modelo

Algunos problemas encontrados en la aplicación de la metodología SIPSE al estudio regional de la interconexión, indicaron la necesidad de contar con un modelo que analice los proyectos hidroeléctricos en forma individual, motivo por el cual se decidió aplicar el modelo WASP al estudio. Ese modelo se describe en un documento que se presenta por separado 20/, y el

^{20/} Wien Automatic System Planning Package (WASP) - An Electric Utility Optimal Generation Expansion Planning Computer Code, op.cit.

Cuadro 9

RESULTADOS DEL MODELO WASP. PROYECTOS PROPUESTOS

Proyecto	Potencia	Generación media (GWh)	Costo total (US\$/kW)
Pueblo Viejo (G)	300	1 974	866
San Lorenzo (S)	180	7 50	551
Corobici (C)	163	841	643
Fortuna (P)	278	1 420	962
Copalar (N)	330	1 520	735
El Cajón (H)	296	1 659	488
Guayabo (C)	150	1 198	540
Chicoc (G)	206	1 323	1 215
Paso del Oso (S)	40	142	1 230
Teribe 1 (P)	296	1 600	514
Siquirres (C)	290	2 000	419
El Tigre (S)	540	1 557	917
Semuc (G)	112	658	523
Teribe 2 (P)	264	1 600	726
Xalalá (G)	276	1 051;	431
Remolino (H)	128	752	816
Tzucanca (G)	60	371	1 025
Zapotillo (S)	120	366	760
Naranjito (H)	34	374	890
Changuinola (P)	609	2 700	1 000

Cuadro 10

RESULTADOS DEL MODELO WASP. ADICIONES DE POTENCIA EN LA SUMA DE PAISES, 1981 A 1995

(Alternativa A)

		Potencia	instalada (MW)	
	Centrales hidr <u>o</u> eléctricas	Centrales geoté <u>r</u> micas	Centrales a vapor	Turbinas a gas	Total
1981	••	120	100	-	220
1982	923	· -	-	•	923
1983	-	30	-	•	30
1984	330	•	-	-	330
1985	446	30	**	-	476
1986	542	30	-	•	572
1987	290	30	-	-	320
1988		30	-	-	30
1989	1 149	-	300	-	1 449
1990	-	-	200	-	200
1991	276	60	-	•	336
1992	128	90	•	-	218
1993	112	120		200	433
1994	204	60	200	150	614
1995	60	240	300	150	750
<u>Total</u>	4 460	840	1 100	<u>500</u>	6 900

Cuadro 11

RESULTADOS DEL MODELO WASP. ADICIONES DE POTENCIA
EN EL SISTEMA INTERCONECTADO CON ABASTECIMIENTO
INTEGRADO, 1981 A 1995

(Alternativa B)

		Potencia	instalada (MW)	
	Centrales hidr <u>o</u> eléctricas	Centrales geoté <u>r</u> micas	Centrales a vapor	Turbinas a gas	Total
1981	300	60	-	. **	360
1982	180	30	•		210
1983	-	90	-	-	90
1984	-	30	-	. •	30
1985	163	150	-	-	313
1986	608	60	•		668
1987	296	- 180	-	. •	476
1988	-	150	-	-	150
1989		60	-	-	60
1990	982	-	-	-	982
1991	916	-	-	-	916
1992	464	-	-	-	464
1993	-	-	-	-	-
1994	120	-		-	120
1995	84	60	-	-	144
<u>Total</u>	4 113	870	-	-	4 983

Cuadro 12

RESULTADOS DEL MODELO WASP. COSTO DE LAS ALTERNATIVAS

(Millones de dólares)

y this	Costo inversión	Costo operación		Valor total
Países aislados				
Alternativa I		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* · ·	•
Guatemala	444.6 352.4 283.7	155.9	153.8	446.6
El Salvador	352.4	272.4	123.6	501.1
Honduras	283.7	110.7	90.8	303.6
Nicaragua	243.3			428.0
Costa Rica	383.6 528.0	21.0	151.2	253.4
Panamá	528.0	310.9	210.0	628.9
Suma paises				
(Alternativa A)	2 235.6	1 141.2	815.0	2 561.6
Sistema regional	•		*	
Abastecimiento integrado				29.022
(Alternativa B)	2 084	768	906	1 945
Sistema regional	• :	•		•
Abastecimiento independi	ente			•
(Alternativa C)	2 237	649	314	2 072
(witeingerva o)				

En el caso de los países aislados se producen instalaciones de potencia termoeléctrica, cuando no hay recursos, proyectos hidroeléctricos que puedan entrar a servicio, cuando aquéllos tienen costo muy elevado o cuando son demasiado grandes para el sistema (proyecto El Tigre). La potencia total instalada es apreciablemente menor en el caso del sistema interconectado (4 983 MW frente a 6 900 MW), la potencia termoeléctrica que aparece en la Alternativa A (1 600 MW) no se presenta en el sistema integrado.

En lo referente a los costos de operación se observan ahorros de 370 millones de dólares de la Alternativa B frente a la A y de 490 millones en la Alternativa C frente a la A.

El costo total actualizado menor corresponde a la Alternativa B con 1 945 millones de dólares frente a 2 561 para la Alternativa A y 2 072 para la Alternativa C.

6. Resultados obtenidos con el modelo Global de Selección de Inversiones (MGI)

a) Planteamiento del modelo

Tanto los aspectos conceptuales del modelo MGI como su adaptación a los seis países del Istmo y al sistema interconectado se presentan con detalle en un informe especial. Interesa sin embargo indicar que las alternativas que se estudiaron con este modelo incluyen además de las llamadas A, B y C una alternativa B1 de interconexión con abastecimiento integrado, en la cual, con el objeto de evitar soluciones con gran dependencia energética entre los países, se han limitado las transmisiones entre los sistemas vecinos de modo que la importación neta de energía no sea superior a un 10% de la demanda del país.

El modelo MGI se planteó regionalizado con seis nodos de forma de optimizar ya sea el conjunto o bien --eliminando las transmisiones-- cada sistema aisladamente.

Las características del consumo y del sistema existente se calcularon a partir de las informaciones utilizadas en el modelo MNI.

Los aportes de las centrales hidroeléctricas existentes y futuras se obtuvieron mediante la aplicación de dos modelos de operación simulada, uno preparado por la CEPAL para ser procesado en minicomputadoras y otro,

^{23/} Modelo global de selección de inversiones (MGI) para los sistemas eléctricos del Istmo Centroamericano, op. cit.

year and acception temperature of the control of th más completo, proporcionado a fines de 1976 por la Empresa Nacional de Electricidad, S.A. (ENDESA) de Chile.

La selección de proyectos hidroeléctricos futuros quedó restringida debido a que un gran número de los que han sido tomados en cuenta en el estudio no dispone de información hidrológica. Se utilizaron los siguientes:

Proyectos
Semuc
Xalalā ² /
Polochic ^a /
El Tigre
Zapotillo
Paso del Oso
Naranjito
Remolino
Pavo Real
Copalar
Boruca
Siquirres
Guayabo
Changuinola
Teribe I
Teribe II

. . .

. 1

Al igual que en los procesos efectuados con el MNI, en el primer período (1981-1983) se consideraron instalados los proyectos Pueblo Viejo (Guatemala), San Lorenzo (El Salvador), El Cajón (Honduras), Corobicí (Costa Rica), Fortuna (Panamá).

A CARL SHARE

elia i kantin lilan ali ma kabu

The second of the second

Estos proyectos no cuentan con hidrología, se les asignó las correspondientes a los proyectos identificados anteriormente como G X 2 y G X 3.

Las inversiones para proyectos futuros se calcularon a partir de los costos directos utilizados en el modelo MNI, agregando gastos de ingeniería y supervisión, imprevistos e intereses durante la construcción.

La curva de costos de proyectos hidroeléctricos se obtuvo a partir del costo base mediante un programa de cómputo (COSCEN) preparado para el caso, y cuyos fundamentos se describen en una nota anterior. $\frac{24}{}$

Los costos de operación y los restantes parámetros económicos se calcularon también a base de datos utilizados en los procesos del modelo MNI.

b) Adiciones de potencia requeridas

Las adiciones de potencia recomendadas por el MGI incluyen, además de los proyectos hidroeléctricos para cada período, la potencia óptima por instalar en los mismos. En algunos casos se recomienda la instalación de una capacidad determinada y sobreequipamiento en períodos posteriores.

Los detalles de las instalaciones seleccionadas por el modelo se presentan en el anexo 5. En el cuadro 13 se indica un resumen de las adiciones de potencia para la Alternativa A, y en el 14 las correspondientes a la opción B y a la Subalternativa B1.

c) Sistema de transmisión y transferencia de energía

El modelo MCI selecciona las capacidades de transmisión a desarrollar en los países que permitan efectuar la operación más económica del sistema.

Las capacidades resultantes del proceso de optimización para la Alternativa de abastecimiento integrado (B) se indican en el cuadro 15. Como puede observarse aparecen, en algunos casos, transmisiones de importancia motivo por el cual se analizó una Alternativa Bl en la cual dichas transmisiones tienen restricciones de potencia y energía. La solución se incluye en el cuadro 16.

d) Costo de las alternativas

Los costos de las cuatro alternativas estudiadas con el MGI se presentan en el cuadro 17.

^{24/} Estimación de los costos de inversión de proyectos hidroeléctricos para varias alternativas de potencia instalada (CCE/SC.5/GRIE/III/6).

Cuadro 13

RESULTADOS DEL MODELO MGI. ADICIONES DE POTENCIA POR PERIODOS PARA LA ALTERNATIVA A (MW)

País	Período.	Hidráulico	Geotérmico	Vapor	Turbina a gas	Total
Guatemala	1 2	100 200	60 90			160 290
	3 4	300 97	90 30	148 611	82 352	620 1 090
Total		<u>697</u>	<u>270</u>	<u>759</u>	<u>434</u>	2 160
El Salvador	1 2	200	60 90	18	85 76	345 184
•	3 4	300	90 90	110 351	24 244	5 24 685
Total		<u>500</u>	<u>330</u>	479	<u>429</u>	1 653
Honduras	1 2 3 4	50 79 91		57 230 346	28 25 83	78 161 321 429
<u>Total</u>		220		633	<u>136</u>	<u>989</u>
Nicaragua	1 2 3 4	250 60	60 300 300	12	46 68 5 21 9	296 140 365 519
<u>Total</u>		<u>310</u>	<u>660</u>	<u>12</u>	<u>338</u>	<u>1 320</u>
Costa Rica	1 2 3 4	150 300 1 038	52 60 150		38 211 283	240 271 733 1 038
Total		<u>1 488</u>	262		<u>532</u>	2 282
Panamá	1 2 3 4	250 300 685	30 30	226 889	712	250 300 941 1 631
<u>Total</u>		1 235	<u>60</u>	1 115	712	3 122
Suma de paí	ses	4 450	1 582	2 998	2 502	11 532

Cuadro 14

RESULTADOS DEL MODELO MGI. ADICIONES DE POTENCIA POR PERIODO PARA EL SISTEMA REGIONAL INTERCONECTADO

Período	Hidraulico	Geotérnico	Vapor	Turbina s a gas	Total
	•	i) Alternat	iva B		
1	1 045	170	-	· •	1 215
2	960	300	ro	-	1 260
3	1 547	660	-	~	2 207
4	1 152	450	2 627	1 639	5 868
<u>Total</u>	<u>4 704</u>	. <u>1_508</u>	<u>2 627</u>	1 639	10 550
		ii) Alternat	iva Bl		
1	951	170	stori	i. 🕶	1 121
2	1 023	300	-	-	1 323
3	2 236	660	486	227	3 609
4	1 073	450	2 225	1 417	5 165
Total	5 283	1_580	2 711	1 644	11 21 8

Cuadro 15

RESULTADOS DEL MODELO MGI. DESARROLLO DE LA TRANSMISION
ALTERNATIVA DE DESARROLLO INTEGRADO (B)

		Perío	do	
Transmisiones	1	2	3	4
GUA - ELS	82	91	94;	94
ELS - HON	190	241	338	338
HON - NIC	62	62	340	340
NIC - COS	253	506	544	544
COS - PAN	154	266	362	362

Cuadro 16

RESULTADOS DEL MODELO MGI. ALTERNATIVA DE DESARROLLO INTEGRADO CON LIMITACION EN TRANSMISIONES (B1)

m				
Transmisiones	1	2	3	4
GUA - ELS	64	64	64	64
ELS - HON	64	8 3	124	124
HON - NIC	6 2	6 2	62	62
NIC - COS	61	79	116	116
COS - PAN	88	123	218	218

Cuadro 17

RESULTADOS DEL MODELO MGI. COSTO TOTAL ACTUALIZADO DE LA APLICACION DE LAS DIFERENTES ALTERNATIVAS ESTUDIADAS

(Millones de dólares)

	Alternativa	Inversión en plantas de generación	Inversión en lineas de transmisión	Costos de operación	Total
A.	Sistemas aislados	3 445	•	2 265	5 710
в.	Sistema regional abaste- cimiento integrado	3 298	70	1 615	4 983
в1.	Sistema regional abaste- cimiento integrado. Transmisiones limitadas	3 289	45	1 718	5 053
C.	Sistema regional abaste- cimiento independiente	3 445	22	2 063	5 53 0

Pág. 33

e) Conclusiones

Respecto a las potencias adicionadas al sistema se observa que la Alternativa B presenta una instalación inferior en unos 1 000 MW a la de los países aislados. Esta última requiere mayor instalación de potencia termoeléctrica (22%); ello se debe a que en el proceso de los países individuales los proyectos hidroeléctricos se aprovechan en menor proporción que en el caso del sistema integrado, el cual coloca potencia termoeléctrica sólo en el cuarto período por agotamiento de los recursos geotérmicos e hidráulicos.

En cuanto al costo de las alternativas cabe destacar los costos de operación. En la Alternativa B resultan 650 millones de dólares más bajos que en la variante \(\frac{1}{2}\) y en la Alternativa C, 200 millones de dólares inferiores a la opción A.

El programa de menor costo total es el de la Alternativa B con 4 983 millones frente a 5 530 de la Alternativa C y 5 710 de la A.

7. Conclusiones generales sobre los resultados obtenidos con las tres metodologías

Cabe destacar que la aplicación de la metodología SIPSE se hizo en forma más detallada que las restantes. La implementación del modelo MGI tuvo como objetivo fundamental formar los siete modelos (para cada uno de los países y para el sistema interconectado) y probar su correcto funcionamiento. Puesto que el modelo WASP no es capaz de seleccionar los proyectos hidroeléctricos por sí solo, su aplicación tuvo por objeto examinar posibilidades de aplicación como programa de simulación anual de los sistemas; por otra parte el tiempo de que se dispuso para los procesos que se han efectuado hasta el momento no hicieron posible su aplicación a nivel mensual ya que el trabajo con este modelo es muy laboríoso. La aplicación completa se haría una vez implementado el modelo en México.

Los datos básicos utilizados deben ser objeto de revisión, sobre todo en lo que respecta a los costos y características de generación de los proyectos hidroeléctricos y al número de ellos incluidos. $\frac{1}{}$

^{1/} Sólo se incluyeron aquellos en que se obtuvieron datos adecuados de hidrología. En el último período, y a falta de proyectos hidroeléctricos, el modelo recurrió a veces a instalaciones termoeléctricas.

Los resultados generales de la aplicación de los tres modelos se muestran en el cuadro 18.

Por los motivos citados y por las diferencias conceptuales existentes entre los proyectos, las comparaciones directas entre los resultados obtenidos deben ser tomados con reserva.

Las cifras dan una idea del orden de magnitud dentro del cual puede esperarse se encuentren los beneficios globales de la interconexión (sin considerar el costo de las redes internacionales de transmisión), y pueden destacarse al respecto las siguientes observaciones:

- i) El costo menor de suministro según las tres metodologías corresponde a la alternativa B, de desarrollo integrado, cuyos ahorros con respecto a la alternativa A serían de 520 (MNI), 620 (WASP) u 800 (MGI) millones de dólares.
- ii) Sólo la operación conjunta de los sistemas desarrollados en forma independiente (alternativa C) significaría ahorros importantes de operación cuyo monto alcanzaría, según los tres métodos de análisis, a 460 (MNI), 490 (WASP) y 200 (MGI) millones de dólares. 2/
- iii) Los beneficios de la interconexión se comparan favorablemente con los costos de inversión y operación de la red internacional de interconexión, cuyo estudio es objeto de un informe separado y cuyo costo total sería, en todo caso, inferior a los 100 millones de dólares.

Resulta necesario destacar que aunque las conclusiones generales del estudio pueden considerarse válidas, las cifras mismas y los programas de desarrollo definidos pueden cambiar en la medida que se actualicen y mejoren las informaciones en que están basadas y, adicionalmente, con los estudios de sensibilizaciós requeridos para este tipo de trabajos.

^{2/} Al parecer la estimación del modelo WASP es optimista debido a que no se completaron las condiciones de seguridad de suministro de energía (lo que requiere de un trabajo muy detallado). Por otra parte, es posible que la estimación de ahorros de operación según el modelo MGI al hacerse con dos bloques en vez de una curva de demanda, pueda ser pesimista. Además, la falta de proyectos hidroeléctricos definidos obliga en este modelo a instalar mayor potencia térmica subiendo consecuentemente los costos de operación.

CUEDTO 18

COSTOS DE DESARROLLO DE LOS SISTEMAS DEL ISTMO CENTROAMERICANO
BAJO TRES ALTERNATIVAS

(Costos totales actualizados en millones de dólares)

Alte	ernativa	Inve	rsión	Ope	eración		r de ate	Cos	
		Model	o MNI						
Α.	Desarrollo nacional independiente	2	809		885	1	192	2	502
в.	Desarrollo regional integrado	2	709		285	1	015	1	979
c.	Desarrollo regional independiente	2	809		428	1	192	2	046
		Model	o WASP						
Α.	Desarrollo nacional independiente	2	236	1	141		815	2	561
	Desarrollo regional integrado	2	084		768		906	1	945
с.	Desarrollo regional independiente	2	237		649		814	2	072
		liode	lo NGI						
Α.	Desarrollo nacional independiente	3	445 <u>e</u> /	2	₂₆₅ b/		<u>c</u> /	5	710
В.	Desarrollo regional integrado	3	298+704	/ ₁	615			4	983
B1.	Desarrollo regional integrado con intercambios			,					
C.	limitados	3	289+45 ^{<u>d</u>}	1	718			5	053
٠.	independiente	3	445+22 <u>d</u>	/ 2	063			5	530

a/ Los costos de inversión para el MGI incluyen gastos de ingeniería e imprevistos (el primer período para el MGI es 1984-1936).

b/ En el cálculo de los costos se prolonga la operación del último año hasta el infinito y se actualiza a 1984.

c/ No es aplicable ya que el programa se lleva al infinito y se actualiza a mediados de 1984.

d/ Inversiones en sistema de transmisión.

Por otra parte el nivel a que se ha desarrollado el estudio hasta el momento permite solamente obtener resultados globales mientras que la adopción de decisiones en materia de interconexión requiere definir con cierta precisión los beneficios que caben esperarse para cada uno de los países involucrados en ella.

Aunque es difícil estimar en qué grado puede influir una mejor definición de la información básica, es razonable pensar que los benefícios económicos son de tal magnitud que justifican una revisión de ellos y la complementación del estudio mediante una metodología como la propuesta en documento aparte ^{3/} que permita evaluar los beneficios individuales para cada país y llegar eventualmente a la justificación económica de cada una de las líneas de interconexión.

^{3/} Análisis comparativo de las metodologías SIPSE, WASP y MGI para su aplicación en el Istmo Gentroamericano, op. cit.

Anexo 1

PARAMETROS PRINCIPALES UTILIZADOS EN LOS PROCESOS EFECTUADOS CON LA METODOLOGIA SIPSE

I. APLICACION DE LOS MODELOS

La metodología "Sistema integrado de planeación del sector eléctrico" (SIPSE), desarrollada conjuntamente por la Comisión Federal de Electricidad de México y Electricité de France, cuyas características generales se han explicado en documento aparte, comprende en lo que respecta a la definición de los medios de generación, las siguientes etapas:

- la. etapa: Definición global de los medios de generación.
- a) Análisis de la oferta de energía hidráulica al inicio del estudio y de las características hidrológicas del sistema. Se efectúa mediante la utilización del modelo CONCENTRABLE.
- b) Definición global de las necesidades de instalaciones de generación. Se efectúa mediante el Modelo Nacional de Inversiones (MNI).
 - 2a. etapa: Definición específica de los medios de generación.
- a) Evaluación de proyectos hidroeléctricos. Se realiza mediante el programa de cálculo económico llamado NOTA AZUL.
- b) Estudio de la localización de las plantas térmicas. Se efectúa mediante el uso del modelo denominado PROLOG. Este modelo propone también una red básica de transmisión.

^{1/} CYE, Môtodo de planeación integral para sistemas eléctricos de potencia (CCE/SC.5/GRIE/III/DI.2).

II. ANALISIS DE LA OFERTA HIDRAULICA

El estudio de las características de operación del sistema hidroeléctrico existente tiene por objeto cuantificar la potencia y energía de origen hidráulico disponible para suplir la curva de carga y establecer las características hidrológicas del sistema que servirán para definir las potencias hidroeléctricas (por categorías) a ser desarrolladas en el período del estudio. Para lo anterior se simula, mediante el empleo del modelo CONCENTRABLE, el funcionamiento de un conjunto de centrales hidroeléctricas bajo condiciones de hidrología determinada.

Las centrales hidroeléctricas se definen por medio de sus características técnicas (potencia, altura de caída, cotas de operación, producción en kWh/m³, curva de embalse del vaso regulador, etc.). El régimen hidrológico utilizado consistió en una muestra de diez años de escurrimientos, precipitación y evaporación sobre los vasos. La política de operación de los embalses se incluye en el modelo en forma de tasas de vaciado y pueden incluirse restricciones como las correspondientes a las de plantas en cascada o compromisos de riego. La forma de la curva de carga del sistema se representa por un polígono de seis bloques.

El funcionamiento del modelo consiste en determinar la generación máxima que es posible obtener del conjunto hidráulico de tal forma que éste se concentre lo más posible dentro de los bloques de mayor demanda. Las políticas de operación de los embalses se seleccionan mediante un proceso de aproximaciones sucesivas.

Los resultados de la operación del modelo consisten en una curva de oferta de potencia hidráulica y sus correspondientes energías ubicadas en la curva de carga de forma que la potencia se concentre de preferencia en las horas de mayor demanda.

La operación del modelo para los diez años de la muestra permite definir las curvas de energía disponible para tres años característicos seleccionades como de hidrología seca, media y húmeda. También se obtienen la energía generada por planta y la distribución mensual de la generación para los años característicos (antes mencionados) por tipos de planta.

La elaboración de las curvas de carga del sistema integrado se basó en los antecedentes --proporcionados por los países del Istmo-- de cargas horarias diarias agrupadas por semana, las cuales se integraron aplicán-doles el coeficiente de diversidad.

Los proyectos que se consideraron en la operación simulada se indican en el cuadro 1 y corresponden a los programas de obras definidas al año 1980 por cada uno de los países del Istmo.

Considerando que la oferta de energía hidráulica más favorable del sistema interconectado debe resultar de la integración de los casos también más favorables de los sistemas aislados, se operó el modelo interconectado con las tasas de vaciado definidas previamente para los sistemas aislados.

Cuadro 1

CENTRALES Y PROYECTOS CONSIDERADOS EN LA OPERACION SIMULADA DEL SISTEMA REGIONAL INTERCONECTADO

(Modelo CONCENTRABLE)

	Tipoª/	Potencia (MV)	Capacidad del vaso (Hm ³)	Cota de diseño (m) (m.s.n.m.)	Coeficiente energético (kWh/m³)
Plantas chicas b/	4	68.0	-	-	0.460
Jurún Marinalâ	4	58.0	31.0	654	1.516
Guajoyo	4	15.0	450.0	48	0.104
Cerrón Grande	4	135.0	1 430.0	57	0.124
5 de Noviembre	2	81.4	50.0	52	0.113
Cañaveral 2	4	42.7	515.0	145	0.320
Río Lindo 2	2	80.0	8.0	373	0.820
Centroamérica	4	48.0	279.0	263	0.610
Arenal	4	135.0	1 162.0	186	0.440
Bayano I	4	150.0	2 800.0	56.2	0.130
General Somoza	3	46.0	16.5	187	0.400
Cachi	3	96.0	51.3	219	0.500
Garit a	2	30.0	52.2	151	0.360
Río Nacho	2	120.0	40.0	450	1.050
Los Esclavos	1	14.0	0.3	108	0.250
María Linda I	1	90.0	0.3	555	1.29
Estrella	1	38.0	0.2	360	0.834
Los Valles	1	42.0	0.0	271	0.627

a/ 1: Hilo de agua; 2: Regulación semanal; 3: Regulación mensual, y 4: Regulación anual.

b/ Agrupa varias plantas de pequeña potencia.

Los resultados de la operación para los diez años de la muestra hidrológica arrojaron las energías generables que se indican a continuación:

Año	Energía generable (GWh)
1064	er in terminal terminal properties and the second s
1964	5 805
1965	6 020
1966	6 978
1967	6 351
1963	6 746
1969	6 388
1970	7 461
1971	6 376
1972	5 361
1973	6 175
Promedio:	6 366

De estas cifras se calcularon los años característicos con los siguientes resultados:

Aão tipo		Generación	Porcentaje		
	<u>Seleccionado</u>	(GWh)	Probabilidad asignada	Desviación	
Seco	1972	5 361	27.3	-16	
Medio	1971	6 376	46.1	-	
Húmedo	1970	7 461	26.6	+17	

Una vez definidos los años característicos se operó nuevamente el modelo CONCENTRABLE con dichos años, y se obtuvieron los datos de potencia y energía concentrable por bloques para cada mes de los años seleccionados.

Finalmente se obtuvieron algunas características hidrológicas para el conjunto hidráulico incluido en el modelo CONCENTRABLE que permiten definir el comportamiento probable de las próximas centrales hidroeléctricas. En lo que concierne a las interrelaciones entre años característicos se obtuvieron los valores siguientes:

Relación de generación	Categoría de regulación			
(año)	Anual	<u>Mensual</u>	<u>Diaria</u>	
Seco/seco	1 000	1 000	1 000	
Medio/seco	1 252	1 112	1 112	
Húmedo/seco	1 466	1 300	1 300	

También se establecieron las variaciones mensuales de la generación para cada categoría y para cada uno de los años característicos (seco, medio y húmedo).

III. SELECCION DE INVERSIONES EN GENERACION A LARGO PLAZO

1. Generalidades

El "Modelo Nacional de Inversiones" (MNI) tiene por objeto definir un programa de instalaciones que abastezca la demanda del sistema a un costo mínimo. La función objetiva a minimizar es la suma actualizada de los costos de inversión, operación y de la energía no servida.

Tanto el costo de operación como el costo de falla aparecen como valores probables, calculados de una serie de casos mensuales con distintas condiciones de hidrología y de demanda incluyendo casos de operación normal y crítica, asociados a su probabilidad correspondiente.

La forma de la curva de demanda se adapta en el modelo a 6 bloques cuyas duraciones son idénticas a las utilizadas en el modelo CONCENTRABLE y la configuración del mercado se representa mediante una demanda máxima en el año de inicio y hasta dos tasas de crecimiento anual en el período considerado.

El estudio cubre los 19 años comprendidos entre 1981-1999, y se dividen en 5 períodos representados por sus años medios como se indica:

Período ·	Año medio
1981-1983	1982
1984-1986	1985
1987-1989	1988
1990-1994	1992
1995-1999	1997

El sistema hidráulico existente al inicio del estudio se representa por el total de la potencia hidráulica instalada y las potencias generables correspondientes distribuidas en 6 bloques horarios para los 12 meses del año y para tres tipos de hidraulicidad (año seco, medio y húmedo) de acuerdo con los resultados obtenidos en el CONCENTRABLE.

2. Categorías seleccionadas

Las alternativas termoeléctricas se incluyen en el modelo por categorías como se indica a continuación:

a) Categorías antiguas

Corresponden a las instalaciones existentes, para las cuales no se considerarán aumentos de potencia dentro del período del estudio; aunque sí están sujetas a un plan de retiro. Se seleccionaron cuatro categorías de este tipo, atendiendo a sus costos variables de generación, como sigue:

- Plantas de vapor con potencia comprendida entre 50 y 25 MW y máquinas diesel con potencia superior a 6 MW
 - Plantas a vapor de potencia inferior a 25 MW
 - Plantas diesel de potencia inferior a 6 MW
 - Turbinas a gas de potencia inferior a 25 MW

b) Categorías en desarrollo

Corresponden a centrales susceptibles de ser instaladas en el período en estudio. Se seleccionaron las siguientes 4 categorías, en orden creciente de sus costos variables de generación:

- Centrales geotérmicas
- Plantas de vapor con potencia superior a 100 MW
- Plantas de vapor con potencia entre 50 y 100 MW
- Turbinas a gas con potencia superior a 25 MW

Para el sistema hidráulico a desarrollar se consideraron 5 categorías, atendiendo al tipo de regulación como sigue:

- Plantas de regulación anual, cuyo vaso les permite acumular agua para un período de varios meses o más
- Plantas de regulación mensual y semanal, con capacidad de almacenamiento para períodos comprendidos entre una semana y un mes
- Plantas de regulación diaria o a hilo de agua, sin vaso de regulación
- Sobre equipo o sea aumentos de potencia en plantas existentes que no agregan energía
- Plantas de rebombeo o de pico, que consumen energía en horas de baja demanda para generar en horas de pico.

/La generación

La generación de las plantas hidráulicas en desarrollo se establece por coeficientes de hidraulicidad --deducidos del CONCENTRABLE al inicio del estudio-- que representa, para cada categoría, la generación para distintas hidrologías y su distribución para cada mes del año.

Las potencias a instalar en las categorías en desarrollo pueden ser objeto de restricciones de máximos o de mínimos con el fin de representar situaciones que condicionan el desarrollo del sistema.

Los costos de operación calculados por el modelo son el resultado de considerar un cierto número de casos típicos de operación en los cuales tanto la hidrología como la demanda se consideran aleatorios. El costo de la energía no servida se representa por una función binomia como el costo de generación térmica marginal más una cifra proporcional a la magnitud de la fella (en potencia).

Los resultados del modelo son las necesidades de capacidad instalada en cada período para cada categoría en desarrollo; los costos totales de inversión, operación y falla, y el costo total actualizado del programa total. Otros datos obtenidos para cada período son:

- Potencia instalada, energía generada y duración (en horas de funcionamiento) por cada categoría térmica
 - Volumen y duración de la falla
- Potencia hidráulica instalada por categorías y energía hidráulica generada
 - Costos marginales de generación por bloques
 - Valorizaciones de la potencia de pico y de la energía
 - Consumo de combustible

3. Parámetros econômicos

a) Costos de inversión de centrales hidroeléctricas

Se contó en primera instancia con el inventario de proyectos de los seis países que proporcionaron antecedentes para un total de 46 proyectos, cuyos costos, sin embargo, están calculados con criterios y niveles de precios diferentes. De éstos los 24 que contaban con antecedentes más completos fueron reducidos a una base común utilizando servicios de consultoría.

Para obtener los costos típicos por categorías se hizo un análisis comparativo de los costos normalizados de los proyectos antes mencionados, eliminado aquellos que tenían costos unitarios muy alejados de los demás. El costo representativo para cada categoría se calculó como promedio de los costos unitarios de los proyectos seleccionados con el siguiente resultado:

<u>Categoria</u>	Costo representativo. Inversión bruta (dólares/kN)		
Regulación anual	576		
Regulación mensual/semanal	576		
Regulación diaria	518		
Sobreequipo	259		
Rebombeo	422		

b) Costos de inversión de centrales termoeléctricas

i) <u>Centrales geotérmicas</u>. La estimación de estos costos está basada en la planta existente en El Salvador y en estimaciones del Jefe del Proyecto Geotérmico de las Naciones Unidas de Nicaragua.

Se indican a continuación los datos obtenidos:

a)	Ahuachapán, El Salvador	la. turbina 2a. y 3a. turbina	800 dőlares/kW 632 dólares/kW
b)	Estimaciones del Jefe del Proyecto Geotérmico de Nicaragua	3 turbinas de 30 MW (promedio)	710 dólares/kW

Los valores medios resultantes de ambos datos son bastante similares, por lo que se tomo la última de estas cifras.

ii) <u>Centrales térmicas</u>. Se adoptaron los costos de inversión de centrales térmicas estimados por el consultor correspondiente, $\frac{1}{}$ como sigue:

Categoria	Inversión bruta (dólares/kW)
Vapor > 100 MW	420
Vapor 50-100 MW	460
Turbinas de gas > 25 MW	200

^{1/} Características y costos de centrales termoeléctricas en el Istmo Centroamericano,(CCE/SC.5/GRIE/III/5/Add/3).

c) Costos fijos de operación y mantenimiento

i) <u>Centrales hidroeléctricas</u>. Se estimaron valores de acuerdo con la experiencia de México (CFE), Costa Rica y Guatemala, como sigue:

<u>Categoría</u>	Costos fijos (<u>dólares/kW/año</u>)	
Rebombeo	5	
Sobreequipo	5	
Regulación diaria	10	
Regulación semanal y/o mensual	10	
Regulación anual	8	

ii) <u>Centrales termoeléctricas</u>. Para el caso de las centrales geotérmicas se recurrió a datos de operación real de centrales existentes en Nueva Zelandia y a estimaciones del Jefe del Proyecto Geotérmico de Nicaragua. Los valores correspondientes para las categorías térmicas se adoptaron de acuerdo con la información proporcionada por el consultor en costos de centrales termoeléctricas.

Los valores adoptados para los costos mencionados fueron los siguientes:

Categorías en desarrollo	Costo fijo de operación y mantenimiento (dólares/kW/año)		
Geotérmica	18.5 <u>a</u> /		
Vapor > 100 MW	9.0		
Vapor 50-100 MW	10.0		
Turbina a gas > 25 MW	2.0		
Categorías antiguas			
Vapor 25-50 MW y diesel > 6 MW	10.0		
Vapor < 25 MW	12.0		
Diesel > 25 MW	4.0		
Diesel 25 MW Turbina a gas 25 MW	3.0		

a/ Se incluye el costo de mantenimiento de los pozos y de las obras de evacuación de aguas residuales.

d) Costos variables de operación de centrales termoeléctricas

Las características de combustibles empleados son las siguientes:

Características	Tipo de c	de combustible	
Caracteristicas	Diesel	Bunker C	
Densidad	0.85	0.95	
Poder calorifico			
kCa1/kg	10 500	9 700	
kCal/galón	33 750	34 874	
kCal/barril	1 417 500	1 484 700	

Los costos variables de operación adoptados se indican en el cuadro 2.

Cuadro 2

SISTEMA REGIONAL INTERCONECTADO

COSTOS INCREMENTALES DE CENTRALES TERMOELECTRICAS POR CATEGORIAS SELECCIONADAS

		Consumo específico		Costo combustible a/	Costo incremental
	Categoría	kCa1/kWh	Galones/kWh	(dőlares/galőn)	(d61ares/kWh)
(Desarrollo)	Geotérmica	~	-	-	0.0010
(Desarrollo)	Vapor > 100 MV	2 400	0.0688	0.252	0.0173
(Desarrollo)	Vapor de 50 - 100 MV	2 550	0.0731	0.252	0.0184
(Antigua)	Vapor de 25 - 50 MW y/o				
	Diesel (Bunker C)	2 900	0.0832	0.252	0.0210
(Antigua)	Vapor < 25 MJ	3 300	0.0946	0.252	0.0238
(Antigua)	Diesel	2 700	0.0800	0.364	0.0291
(Desarrollo	Turbina de gas > 25 MW	3 500	0.1037	0.364	0.0377
(Antigua)	Turbina de gas < 25 MW	4 000	0.1185	0.364	0.0431

Estos costos fueron calculados de acuerdo con la información proporcionada por el consultor en costos de centrales termo eléctricas. Para calcular los promedios del Istmo se tomaron los costos en plantas que usan Bunker C, que estuvieran localizadas cerca de las refinerías y los costos en plantas que usan diesel, que estuvieran cercanas a los centros de consumo (para tomar en cuenta, en cierta forma, los costos del transporte local).

e) Tasas de interés y de actualización

La tasa de interés utilizada para el cálculo de los intereses intercalares durante el período de construcción de las centrales fue de 9% anual. Esta cifra toma en consideración las tasas reales de interés utilizadas por los organismos de crédito externo (entre 7% y 8%) y las tasas de interés de préstamos locales en moneda nacional (entre 9% y 12%).

Para el cálculo de los intereses durante la construcción se adoptaron los ritmos de inversiones que se indican en el cuadro siguiente:

Cuadro 3

DISTRIBUCION DE INVERSIONES PARA CENTRALES HIDROELECTRICAS

(Porcentaje de la inversión bruta total)

m/1	T1			Añ	os		
Tipo de central	Total	1	2	3	4	5	6
Hidráulica							
Regulación amual	100	5	14	35	25	11	10
Regulación mensual	100	5	14	35	25	11	10
Regulación diaria	100	5	14	35	25	11	10
Sobre-equipo	100	30	20	50	-	-	-
Rebombeo	100	5	14	35	25	11	10
Termoeléctrica							
Geotérmica	100	8	27	45	20	-	-
Vapor	100	3	27	45	20		
Turbinas a gas	100	100	-	-	-	-	-

La tasa de actualización adoptada es de 12% amual, esperándose hacer, más adelante, estudios de sensibilidad con tasas de 8 y 10%.

Pág. A-14

El cálculo del coeficiente de reemplazo y los períodos de vida útil adoptados para los distintos tipos de planta se indican en el cuadro siguiente:

Tipo de planta	Vida útil (años)	Tasa de actualiza- ción (porcentaje)	Coeficiente de reemplazo
Hidráulicas	50	12	0.0035
Geotérmicas y de vapor	30	12	0.0345
Turbinas a gas	15	12	0.2235

Anexo 2

MODELO NACIONAL DE INVERSIONES. RESULTADOS DE LOS ESTUDIOS DE DEFINICION DE LOS MEDIOS DE GENERACION

1. Sistemas nacionales

Los resultados principales de los estudios destinados a definir los medios de generación mediante el Modelo Nacional de Inversiones (MNI) para los sistemas de los países independientes se presentan en los cuadros 1 al 6. En ellos se detallan los siguientes elementos:

- a) Necesidades de instalación de potencia clasificadas en geotérmica, de vapor, de gas e hidroeléctrica por períodos;
 - b) Costo de inversión y operación por periodos;
 - c) Costo total actualizado del programa;
- d) Energía generada según tipo: geotérmica, térmica de otros tipos e hidroeléctrica por períodos;
 - e) Consumo de combustible por períodos.

En el cuadro 7 se integran los cuadros 1 al 6, representando las cifras correspondientes a la suma de los desarrollos independientes de los sistemas para todo el Istmo.

2. Sistema integrado regional (SIR)

El estudio del SIR con el MNI se realizó para dos alternativas. La primera que se ha llamado DESARROLLO INTEGRADO contempla la expansión de los seis sistemas como un solo sistema integrado a partir del segundo período (1984-1999) y constituye la alternativa que representa mayores beneficios económicos que se derivan de ahorros de inversión (al disminuir las reservas totales de potencia y compartir las mismas, desarrollo coordinado de los recursos hidráulicos a fin de transferir a los países deficitarios) y ahorros de operación al operar el sistema en forma conjunta con el objeto de disminuir la generación termoeléctrica.

Considerando que la alternativa anterior representa un cierto grado de dependencia energética para ciertos países, se ha planteado una segunda alternativa que se ha denominado DESARROLLO INDEPENDIENTE en la cual cada país realiza su desarrollo como sistema aislado (definido al estudiar el sistema aislado) durante todo el período 1981-1994. En este caso los ahorros de inversión son nulos en el período señalado y los beneficios se derivan únicamente de la optimización de la operación del conjunto.

Los resultados de la aplicación del MNI al sistema integrado para las dos alternativas mencionadas se señalan en los cuadros 8 y 9.

Cuadro 1

GUATEMALA: RESULTADOS DEL MODELO NACIONAL DE INVERSIONES

Dontodo	Potencia termoeléctrica			Determine hidden 18 - tonic -	W - t - 1
Período	G eotérmica	Vapor	Gas	Potencia hidroeléctrica	Total
1	-	~	•	300	300
2	60	-	-	•	6 0
3	9 0	-	-	20 6	2 96
4	90	150	30	411	681
5	30	100	_	352	482

II. Resultados de operación en el año medio del período

	E:	nergia gener		Consumo de	combustible	
Per1odo	Geotérmi c a	Otra térmica	Hidro	Total	<u>(Millones</u> Bunker	de galones) Diesel
1	144	301	1 747	2 192	23.03	0.26
2	3 48	308	2 349	3 005	21.05	3.29
3 .	771	318	3 082	4 121	21.23	4.09
4	1 177	492	4 484	6 153	34.46	2.03
5	1 759	1 422	6 727	9 908	92.87	12.60

Período	Inversión período (1)	Operación acual (para el año medio del periodo) (2)	Valor final de rescate (3)	Costo total (1)+(2)=(3) (4)
1	346.3	8,23	•	
2 ·	57.4	11.01	· •-	
3	294.7	15.61		-
4	779.3	22.00	54	_
5	805.0	8382		
Costo total	* .			
actualizado	<u>788.4</u>	146.6	155.6	779.4

a/ La potencia desarrollable es una variable continua.

Cuadro 2

EL SALVADOR: RESULTADOS DEL MODELO NACIONAL DE INVERSIONES

Periodo	Potencia	termoeléctr:	ica	D-1	
	Geotérmica	Vapor	Gas	Potencia hidroeléctrica	Total
1	6 0	-		180	240
2	60		2 <u>a</u> /	16	7 8
3	90	-	41	90	221
4	•	6 2	75	404	541
5	-	348	105	192	645

II. Resultados de operación para el año medio del período

	E	nergia gener	rada (GWh)		Consumo de combustible	
Per1odo	Geotérmica	Otra térmica	Hidro	Total	<u>(Millones o</u> Bunker	le galones) Diesel
1	712	307	1 017	2 036	24.29	1.74
2	1 060	315	1 27 8	2 653	24.03	2.83.
3	1 555	346	1 560	3 461	24.71	5.13
4 .	1 770	635	2 390	4 795	40.41	13.23
5	1 843	2 032	3 334	7 209	129.79	24.20

Periodo	Inversión período (1)	Operación anual (para el año medio del período) (2)	Valor final de rescate (3)	Costo total (1)+(2)-(3) (4)
1	193.8	10.87	•	-
2	71.8	14.16	-	-
3	170.0	18.95	,••	-
4	390.1	33.49	-	-
5	388.2	96.38	-	-
Costo total actualizado	<u>445.1</u>	<u>186.2</u>	<u>134.7</u>	<u>496.7</u>

<u>e</u>/ La potencia desarrollable es una variable continua.

Cuadro 3

HONDURAS: RESULTADOS DEL MODELO NACIONAL DE INVERSIONES

D	Poten	cia termoeléctrica	Dote	encia hidroeléctrica	Total
Periodo	<u>Geotérmica</u>	Vapor	Gas	sicia midioelectifea	IULAI
7	_	<u>₂a</u> /	2 <u>a</u> /	160	154
2	-	<u>~</u>	10	119	129
3	-	- ,	10	158	168
4.	-	د <i>ی</i> دی	49	274	367
5	•	116	34	374	524

II. Resultados de operación para el año medio del período

Periodo		Energía gener	Consumo de (Millones d	combustible de galones)		
	Geotérmi ca	Otra térmica	Hidro	Total	Bunker	Diesel
1	••	107	1 124	1 231	6.34	2.97
2	-	173	1 632	1 755	3.84	2.61
3	-	63	2 2 9 2	2 355	2.84	2.85
4	-	105	3 381	3 486	4.84	4.02
5	-	296	5 396	5 692	16.76	5.91
			•	,		

Per í odo	Inversión período (1)	Operación anual (para el año medio del período) (2)		Costo total (1)+(2)-(3) (4)
<u>1</u>	132.6	3.66	_	
2	100.1	2.89		
3	132.0	2.92		-
4	263.2	5.18	-	· -
5	384.5	14.64	-	·
Costo total	<u>359.2</u>	34.47	105.0	288 , 67

a/ La potencia desarrollable es una variable continua.

Cuadro 4

NICARAGUA: RESULTADOS DEL MODELO NACIONAL DE INVERSIONES

Período	Potencia termoe	léctrica	Potencia hidroeléctrica	· •	
	Geotérmica	Gas	Locencia midiosiectica	Total	
1981-1983	50	= /	•	50	
1984-1986	-	1 ^{2/}	165 ⁻	166	
1987-1989	66	7 5	-	306	
1990-1994	280	_	•	280	
1995-1999	300	17	~	317	

II. Resultados de operación para el año medio del período

	Ene		combustible			
Período	Geotérmica	Otra térmica	- Hidro	Total	(Millones e Bunker	de galones) Diesel
1	997	565	30 8	1 870	44.04	-
2	1 056	64 0	791	2 437	49.23	0.12
3	1 198	6 3 6	1 472	3 306	48.55	1.18
4	2 315	511	1 731	4 557	39.03	1.09
5	4 408	520	1 157	6 085	39.24	2.01

Período	Inversión período (1)	Operación anual (para el año medio del período) (2)	Valor final de rescate (3)	Costo total (1)÷(2)-(3) (4)
1	47.9	15.58	•	•
2	135.2	18.79	-	-
3	218.5	21.14	-	-
4	268.0	19.67	-	•
5	347.6	24.37	**	•
Costo total actualizado	341.3	<u> 137.61</u>	122.0	<u>356.91</u>

a/ La potencia desarrollable es una variable continua.

Cuadro 5

COSTA RICA: RESULTADOS DEL MODELO NACIONAL DE INVERSIONES

Período	<u>Potencia</u>	Potencia termoeléctrica			al Katwiaa	Total
retrogo	Geotérmica	Vapor	Gas	Potencia hidro	erectifica	Total
1		•		48		48
2	•	1	2	1 59		162
3	22	17	3	159		201
4	140	131	9	261		541
5	-		118	532		650

II. Resultados de operación para el año medio del período

	Ene	rgis generada	a (Mih)		 Consumo de	combustible
Período	Geotérmica	Otra térmica	Hidro	Total	 (Millones Bunker	de galones) Diesel
1		311	2 046	2 357	 23,80	3.62
2	-	328	2 654	2 982	23.92	5.35
3	44	328	3 3 99	3 771	23.56	6.00
4	408	334	4 415	5 157	23,57	6.41
5	754	431	6 445	7 630	24.60	15.09

Período	Inversión período (1)	Generación anual (para el año medio del período) (2)	Valor final de rescate (3)	Costo total (1)÷(2)-(3) (4)
1	35.2	9.99		
2	115.1	12.08		
3	135,2	1 0.65		
4	326.2	16.00		
5	465.4	26,86		
Costo total				
actualizado	317.0	100.91	111.6	306.31

Cuadro 6

PANAMA: RESULTADOS DEL MODELO NACIONAL DE INVERSIONES

Período	Potencia	termoeléctr	D. A	7T . 1	
reliodo	Geotérmica	Vapo r	Gas	Potencia hidroeléctrica	Total
1		-	-	260	2 6 0
2	-	-	-	308	308
3	•	•	50	423	473
4	30	-	174	648	852
5	30	667	349	. •	1 046

II. Resultados de operación para el año medio del período

	Energía generada (GWh) Consumo de c					combustible
Periodo	Gectérmica	Otra térmica	Hidro	Totel	<u>(Millones</u> Bunker	de galones) Diesel
1	-	843	1 834	2 67 7	70.94	0.47
2	-	732	2 8 7 9	3 611	60.11	1.21
3	-	714	4 222	4 936	57.43	2.24
4	99	1 014	6 744	7 758	63.10	15.27
5	312	4 186	9 469	13 655	222.32	85.3 3

Período	Inversión período (1)	Operación anual (para el año medio del periodo) (2)	Valor final de rescate (3)	Costo total (1)+(2)-(3) (4)
1	212.7	24.69	-	-
2	252.0	23.64	•	-
3	355.4	25.74	•	• •
4	615.5	41.41	•	-
5	514.0	200. 06	-	-
Costo total				
actualizado	729 .1	329.08	202.1	<u>856.08</u>

Cuadro 7

RESULTADOS DEL MODELO NACIONAL DE INVERSIONES.

SUMA DE LOS PAISES (ALTERNATIVA A)

eriodo	Potenc	ia termoeléctrica		Potencia hidroeléctrica	Tota:
	Geotérmica	Vapor	Gas		
1	110	2	2	948	1 063
2	121	-	14	768	90:
3	263	_	179	1 201	1 64
<i>ا</i> ر	531	25 6	337	1 998	3 12:
5	360	1 231	62 3	1 517	3 73

II. Resultados de operación para el año medio del período

Período		Energía gene	erada (GWh)		Consumo de (Millones d	combustible le galones)
	Geotérmica	Otra térmica	Hidro	Total	Bunker	Diesel
1	1 853	2 434	8 076	12 363	192	9
2	2 464	2 395	11 633	16 493	182	15
3	3 568	2 407	15 975	21 950	173	22
<u>4</u>	5 769	2 990	23 147	31 906	342	70
5	9 076	8 563	32 540	50 179	875	48
1981-1986 1981-1999	12 951 97 0880	<u>14 490</u> 79 476	<u>59 127</u> 385 487	<u>83 5€8</u> 5€2 843	$\frac{1}{7} \frac{122}{741}$	<u>72</u> 728

III. Costo de la solución (millones de dólares)

·	Inversión per i odo (1)	Operación anual (para el año medio del período) (2)	Valor final de rescate (3)	Costo total (1)∻(2)-(3) (4)
_	,			
1	968.5	71.21	-	-
2	731.6	77.99	-	
3	1 305.8	88.56	-	-
Z _Ļ	2 642.3	129.41	-	•••
5	2 904.7	425.42	-	-
Costo total				
actualizado	2 809.5	885.17	1 192.13	2 502.5
	•			

/Cuadro 8

Cuadro 8

RESULTADO DEL MODELO NACIONAL DE INVERSIONES
SISTEMA INTERCONECTADO DESARROLLO INTEGRADO (Alternativa B)

Período	Potencia termoeléctrica				
. C1 1000	Geotêrmica	Vapor	Gas	Potencia hidroeléctrica	Total
1	110	2	2	948	1 062
2	120	_	. -	560	680
3	280	-	-	88 8	1 168
4	510	-	-	2/519	3 029
5	600	-	14	3 890	4 504

II. Resultados de operación para el año medio del período

Periodo	Energía g	enerada e (GWh		medio	Consumo de combus- tible en el período		
CLIOUO	Geotérmica	Otra térmica	Hidro	Total	(Millones d Bunker		
1	1 823	1 237	9 303	12 363	97		
2	2 407	1 218	12 868	16 493	96	1	
3	3 590	1 317	17 043	21 950	99	7	
4	4 840	893	26 173	31 906	65	8	
5	7 122	1 023	42 034	50 179	71	14	
981-86	12 690	7 365	66 513	86 568	579	3	
981-99	83 270	20 896	458 377	562 843	1 556	<u>134</u>	

Período	Inversión período (1)	Operación anual (para el año medio del período) (2)	Valor final de rescate (3)	Costo tota1 (1)+(2)-(3) (4)
<u>1</u>	867.3	33.52		
2	538.8	37.05		
3	966.6	46.38		
Lį.	2 487 .7	37.38		
5	3 664.8	52.97		
Costo total				
actualizado	2 709.02	<u>295.52</u>	1 015.6	1 979.5

Cuadro 9

RESULTADO DEL LODELO NACIONAL DE INVERSIONES.

SISTEMA INTERCONECTADO DESARROLLO INDEPENDIENTE (Alternativa C)

Período		Potencia	termoeléctr	ica	Potencia hidroeléctrica	Total
rerrogo	,	Geotérmica	Vapor	Gas	Fotencia midioelectica	10001
1		110	2ª./	2a/	948	1 062
2		121	-	14	768	903
3		263	-	179	1 201	1 643
4		531	256	337	1 998	3 122
5		360	1 231	623	1 517	3 731

II. Resultados de operación para el año medio del período

		Energia (CW	generada m)		Consu	mo de tible
Período	Geotérmica	Otra térmica	Hidro	Total	(<u>Millones</u> d Bunker	e galones) Diesel
1	1 824	1 237	9 302	12 363	97	-
2	2 185	1 123	13 180	16 493	89	-
3	2 934	906	18 110	21 950	71	-
4	4 925	1 141	25 840	31 906	87	1
5	9 975	6 072	34 132	50 179	405	47
1981-1986	12 027	7 095	67 446	86 568	558	-
1981-1999	95 329	45 878	421 635	562 843	3 231	240

Período	Inversión periodo (1)	Operación anual (para el año madio del período) (2)	Valor final del rescate (3)	Costo tota1 (1)÷(2)-(3) (4)
1	968.5	33,52	-	-
2	731.6	33.94	-	-
3	1 305.8	30,29	-	-
4	2 642.3	42.51	-	-
5	2 904.7	274.08	-	-
Costo total actualizado	2 809.5	428.66	1 192,13	2 046.03

a/ Restricción destinada a igualar exactamente los programas nacionales.

Anexo 3

APLICACION DEL PROGRAMA DE CALCULO DEL VALCR ECONOMICO
DE UNA CENTRAL AIDROELECTRIGA (NOTA AZUL)

El programa denominado NOTA AZUE evalúa el beneficio relatívo que representa un proyecto hidroeléctrico para el sistema en estudio. Para ello se basa en los costos marginales de desarrollo que calcula el modelo MNI.

Los aportes (A) del proyecto son:

The San April .

- Valor de la potencia
- Valor de la energía colocada en el pico
- Valor de la energia colocada en la base

Los gastos (B) del proyecto son:

- La inversión en la central y en la linea de transmisión
- Los costos fijos de operación

Ambas cifras se expresam en valor presente a un año de referencia, que es el de posible entrada del proyecto al sistema. Para este caso se utilizaron los años medios de los períodos empleados en el MNI.

El beneficio relativo R es:
$$R = \frac{A - B}{B}$$

El resultado de la aplicación del programa a los proyectos del Istmo se presenta en el cuadro siguiente:

C'ALCULO DEL VALOR ECONOMICO DE LOS PROYECTOS HIDROELECTRICOS PEL ISTMO CENTROAMERICANO

n •	n I	Potencia		Valuetzaci	Período	icio pelat	140
Pals	Proyecto	(MV)	1	2	3	4	5
Guatemala	Chicoc	206	1.04	1.22	1.34	* 1.36	1.42
Guatemala	Semuc	112	0.97	1.13	1.24	1.26	1.31
Guatemala	Estrella Polar	116	0.80	0.95	1.05	1.06	1.12
Guatemala	El Arco	91	1.04	1.21	1.32	1.34	1.40
Guatemala	Tzucanca	60	0.99	1.16	1.27	1.29	1.35
Guatemala	Corral	84	0.84	0.99	1.09	1.11	1.16
El Salvador	Paso del Oso	40	-0.28	-0.23	-0.20	-0.20	-0.18
El Salvador	El Astillero	15	0.15	0.25	0.31	0.32	0.36
Honduras	Wankibira	50	-0.16	-0.10	-0.06	-0.06	-0.04
Honduras	Yaguala	90	-0.37	-0.33	-0.30	-0.29	-0.28
Honduras	Culuco	75	0.12	0.19	0.25	0.25	0.28
Costa Rica	Palomo	38	0.34	0.43	0.49	0.50	0.54
Costa Rica	Guayabo	1 50	0.44	0.57	0.66	0.67	0.72
Panamá	Paja de Sombrer		1.00	1.16	1.28	1.30	1.36
Guatemala	Xalala	276	0.85	0.98	1.07	1.08	1.13
Guatemala	Polochic	170	0.36	0.45	0.51	0.52	0.56
Guatema1a	San Juan	101	0.48	0.60	0.68	0.69	0.73
El Salvador	El Tigre	540.	0.62	0.72	0.79	0.79	0.83
Costa Rica	Ventanas Garita	80	-0.03	0.03	0.07	0.07	0.09
Costa Rica	Siquirres	290	0.44	0.57	0.66	0.67	0.73
Guatemala	Chulac	426	0.40	0.50	0.57	0.58	0.63
Guatemala	Chacchila	54	-0.04	0.01	0.04	0.04	0.0
Guatemala	Atitlán	101	0.01	0.08	0.12	0.12	0.1
Guatema1a	Sauce	121	0.04	0.09	0.13	0.14	0.16
Guatemala	Serchil	150	0.06	0.11	0.15	0.16	0.1
Guatemala	El Carmen	113	0.10	0.17	0.21	0.22	0.24
El Salvador	Zapotillo	132	-0.05	0.02	0.07	0.07	0.1
Honduras	Remolino	128	0.92	1.07	1.18	1.20	1.20
Honduras	Wampu	270	0.49	0.59	0.67	0.68	0.7
Honduras	Piedras Amarill	as 310 84	0.63 -0.05	0.75 0.02	0.83 0.06	0.84 0.07	0.8 0.1
Honduras	Maranjito	95	_0.10				
Honduras Honduras	Los Chorros Cuyamei	700	~0:91	-0:14 1:04	-0:10 1:13	-9: 1 2	-0.0
Honduras	Cayetano	210	0.25	0.34	0.40	0,41	0.4
Nicaragua	Paso Real	50	-0.14	-0.08	-0.04	-0.03	-0.0
Nicaragua	Copalar	3 30	0.27	0.37	0.43	0.44	0.4
Costa Rica	Boruca	760	0.56	0.69	0.78	0.79	0.8
Panamá	Changuinola	609	0.05	0.13	0.18	0.19	0.2
Panamá	Teribe IIA	264	-0.05	0.03	0.08	0.09	0.1
Panama	Teribe IC	296	0.28	0.39	0.46	0.47	0.5
Panamá	Tabasará	112	0.41	0.53	0.62	0.63	0.6

Anexo 4

PROGRAMAS DE OBRAS OBTENIDAS COMO RESULTADOS DE LA APLICACION
DEL MODELO:WASP

RESULTADOS DEL MODELO WASP. SISTEMAS AISLADOS

ATO	Proyecto	Potencia (MV)
Guatemai.a		
1981	Geotérmico	6 0
1982	Pueblo Viejo	300
1986	Chicoc	206
1989	Vapor	200
1991	Xalalá	276
1993	Semuc	112
1994	Geotérmico	30
1995	Tzucanca	60
	Gas	50
	Geotérmico	60
DT SATISANON		
EL SALVADOR		•
1981	Geotérmico	30
1932	San Lorenzo	180
1983	Geotérmico	30
1985	Geotérmico	30
1986	Paso del Oso	40
	Geotérmico	30
1987	Geotérmico	30
1988	Geotérmico	30
1989	El Tigre	540
1994	Zapotillo	1207
1995	Geotérmico	30
HONDURAS	•	
		2/
1981	. Vepor	100 <u>a</u> /
1985	El Cajón	296
1992	Remolino	128
1994	Narenjito	84
1995	Gas	59
NI CARAGUA		
1984	Copalar	330
1989	Vapor	100
1992	Geotérmico	90
1993	Gas	50
	Geotérmico	30
1994	Georgianico	50
1995	Gas	50 50
3. 7 J J	Geotérmico	
	GEOLETISICO	30

/Continúa

Año	Proyecto	Potencia (MW)
COSTA RICA		
1992	Corobicí	163
1985	Guayabo	150
1987	Siquirres	290
1990	Vapor	200
1991	Geotérmico	60
1993	Gas	100
	Geot ér mico	30
1994	Gas	100
	Geotérmico	30
1995	Vapor	100
	Geotérmico	6 0
PANAMA		•
1981	Geotérmico	30 ·
193 2	Fortuna	280
1986	Teribe 1	29 6
1989	Changuinola	609
199 3	Geotérmico	60
	Gas	50
1994	Vapor	200
1995	Vapor	200
	Geotérmico	60

a/ Se impuso como restricción que el proyecto El Cajón no puede entrar antes de 1982; el programa instala en consecuencia una central termoeléctrica en 1981 para abastecer la demanda.

RESULTADOS DEL MODELO WASP. SISTEMA INTERCONECTADO CON ABASTECIMIENTO INTEGRADO

(Alternativa B)

Año	Proyecto	Potencia (MW)
1981	Pueblo Viejo	300
	Geotérmico	60
1982	San Lorenzo	180
	Geotérmico	30
1983	Geotérmico	90
1984	Geotérmico	30
1985	Corobici	163
	Geotérmico	150
1986	Fortuna	278
	Copalar	330
	Geotérmico	60
1987	El Cajón	29 6
	Geotérmico	180
1988	Geotérmico	150
1989	Geotérmico	60
1990	Guayabo	150
	Chi c oc	20 6
	Paso del Oso	40
	Teribe 1	2 96
	Siquirres	290
1991	El Tigre	540
	Jemuc	112
	Teribe 2	264
1992	Xalalá	276
	Remolino	128
	Tzucanca	60
1994	Zapotillo	120
1995	Naranjito	84
	Geotérmico	60

Anexo 5

RESULTADOS DE LA APLICACION DEL MODELO GLOBAL DE SELECCION DE INVERSIONES (MGI) A LOS PAISES DEL ISTMO CENTROAMERICANO

RESULTADOS DEL MODELO MGI ADICIONES DE POTENCIA PARA PAISES AISLADOS

(Alternativa A)

Pais	Per f odo	Año medio	Proyecto	Instalaciones de potencia (MW)
GUATEMALA	1	1984-1986	Xalalá	100
			Geotérm ic a	60
	2	1987-1989	Xalalá	200 <u>a</u> /
			Geotérmica	90
	3	1990-1994	Polochic	300
			Geotérmica	90
			Vapor	148
			Turbinas a gas	82
	4	1 995~19 99	Semuc	97
			Geotérmica	30
			Vapor	611
			Turbinas a gas	352
EL SALVADOR	1	1984-1986	Zapotillo	200
			Geotérmi c a	60
			Turbinas a gas	85
	2	1987-1989	Geotérmica	90
	•	•	Vapor	18
			Turbinas a gas	76
	3	1990-1994	El Tigre	300
	,		Geotérm ic a	90
			Vapor	110
			Turbinas a gas	24
	4	1995 - 199 9	Geotérmica	90
			Vapor	351
			Turbinas a gas	244
HONDURAS	1	1984-1986	Remolino	50
			Turbinas a gas	28
	2	1987-1989	Naranjito	49
			Remolino a/	30
			Vapor	57
			Turbinas a gas	25
	3	1990-1994	Naranjito <u>a</u> /	91
			Vapor	230
	4	1995-1999	Vapor	346
			Turbinas a gas	83
			_	

Anexo 5 (Conclusión)

Pais	Período	Año medio	lnstelaciones de po tencia	(MW)
NICARAGUA	1	1984-1986	Copalar	250
			Turbinas a gas	46
	2	1987-1989	Geotérmica	60
•	r.		Vapor	12
			Turbinas a gas	68
	3	199 0- 1994	Paso Real	60
			Geotérmica	300
			Turbinas a gas	5
	4	1990-1994	Geotérmica	300
		÷	Turbinas a gas	219
COSTA RICA	1	1984-1986	Guayabo	150
	0*	* •	Geotérmica	52
			Turbinas a gas	3 8
,	2	1987-1989	Geoté rmic a	60
			Turb in as a gas	211
	3 .	1 990- 1994	Siquirres	300
			Geotérmica	150
			Turbinas a gas	283
	4	1995-1999	Boruca	1 038
PANAMA	1	1984-1986	Teribe 2	250
	2	1987-1989	Teribe 1	30 0
	3 ·	1 990- 1994	Changuinola	685
			Geotérmica	30
		**	Vapor	226
	4	1995-1999	Geotérmica	30
			Vapor	889
			Turbinas a gas	712

a/ Sobreequipamiento.

...RESULTADOS DEL MODELO MGI ADICIONES DE POTENCIA PARA SISTEMA INTEGRADO

(Alternativa B)

Período	Año medio	Proyecto	Instalaciones de Potencia (MW)
1	1984-1986	Zap oti llo	45
	•	Remolino	160
		Boruca	223
		Siquirres	300
		Guajoyo	200
:		Teribe 2	117
		Geotérmi c a	170
2	1987-1989	Xalalá	300
		Boruca <u>a</u> /	527
		Teribe 2 a/	133
.		Geotérmica	300
3	1990-1994	Semuc	50
		Polochic	300
	•	Teribe 1	300
		Zapotillo <u>a</u> /	147
		Changuinola	500
	•	Copalar	250
		Geotérm ic a	660
4	1995-1999	Semuc <u>a</u> /	50
		El Tigre	300
		Naranjito	142
		Paso Real	60
		Copalar <u>a</u> /	200
		Changuinola g	<u>y</u> / 400
		Geotérmica	450
•		Vapor	2 627
•		Turbinas a ga	ıs 1 639

a/ Sobreequipamiento.

RESULTADOS DEL MODELO MGI ADICIONES DE POTENCIA PARA SISTEMA INTEGRADO

(Alternativa B-1)

Per i od o	Año med io	Proyecto	Instalaciones de potencia (MW)
1	1984-1986	Zapotillo	141
		Naranjito	102
•		Remolino	160
		Copalar	191
		Siquirres	60
		Guayabo	200
	· ·	Ter i be 2	97
		Geotérmica	170
2	1987-1989	Xalalá	300
	· ·	Naranjito <u>a</u> /	40
	in the second second	Copalar a/	78
		Boruca	335
		Teribe 1	147
	,	Teribe 2 a/	123
		Geotérmica	300
3	1990-1994	Semuc	50
		Polochic	300
	<i>;</i>	El Tigre	269
	4.	Zapotillo a/	46
		Paso Real	60
		Boruca <u>a</u> /	594
		Siquirres	213
		Changuinola	551
		Teribe l a/	153
		Geotérmica	660
		Vapor	486
	•	Turbinas a gas	227
4	1995-1999	Semuc a/	50
		Boruca	673
		Changuinola	3 50
		Geotérmica	450
		Vapor	2 225
		Turbinas a gas	1 417

a/ Sobreequipamiento.