FACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEAN # **Technology and alternative** energy use in motor vehicle transport in Latin America and the Caribbean ## Background In Latin America, energy consumption in the transport sector accounted for 27% of total energy consumption in 2011. Within this category, motor vehicle transport accounted for 90%, as it represents a large share of the travel mix and is heavily dependent on fossil fuels. The Latin American Energy Organization (OLADE) estimates that energy demand in the region could double by 2030. However, the introduction of efficient technologies and greater use of innovative energy sources in transport, such as biofuels and electricity, could reduce energy consumption by 102 million tons of oil equivalent (Mtoe) per year, or 26% less energy than the projected baseline scenario (OLADE, 2013). Part of this process has already begun, as the energy mix in Latin America and the Caribbean shows that the share of fossil fuel energy is decreasing steadily, down from more than 75% in 1990 to less than 72% in 2012, with oil clearly being replaced by natural gas (the share of which increased from 15% to 27% over the same period). Similarly, the International Energy Agency (IEA) considers that the fuel economy of new vehicles could be improved by as much as 50% by 2030 in a cost-effective manner, which would reduce fuel use by close to 500,000 tons of oil equivalent (toe) and annual carbon dioxide (CO<sub>2</sub>) emissions by almost 1 gigaton (ECLAC, 2014a). Thus, in line with the goal of gradually replacing fossil fuels with renewable fuels, alternative fuels are expected to play an increasingly important role in the next decade, including in fostering growth and employment, competitiveness, the decarbonization of transport and diversification of the energy mix. As a result, the transport sector would not only be able to cut its energy consumption, but also reduce its carbon footprint and move towards more sustainable logistics. This document provides background on energy consumption in the road transport sector, and on the advantages and disadvantages of new propulsion technologies in this field. It also underscores the importance of This document provides background on energy consumption in the road transport sector, and on the advantages and disadvantages of new propulsion technologies in this field. This bulletin was prepared by Rolando Campos **Canales, Consultant with the Natural Resources** and Infrastructure Division of ECLAC. Gabriel Pérez, Economic Affairs Officer in the same division, also contributed to and supervised the preparation of the document. For more information on this subject, contact gabriel.perez@cepal.org. The views expressed in this document are those of the author and do not necessarily reflect the opinions of the Organization. **Background** I. Greenhouse gas emissions and energy consumption II. New combustion technologies for mobility and cargo logistics III. Recommendations IV. Bibliography an intersectoral approach to fine-tuning and coordinating policies to achieve the energy efficiency targets required for a sustainable energy future. Section I of the document analyses emissions and energy consumption in the sector. Section II examines the most commonly used fuels in motor vehicle transport and the most developed technologies. Lastly, section III presents recommendations for successful implementation. ### A. Characteristics of freight transport in Latin America Several aspects of road transport make it particularly attractive for moving general cargo, including its versatility —it can move goods from door to door—; its reliability with respect to meeting deadlines; its modularity and ability to provide high-frequency services; and its ability to facilitate the tracking of vehicles and cargo. Within the road transport category, transport by truck plays a significant role in Latin America, accounting for the lion's share of the domestic cargo transport mix, frequently above 90%. The expansion of the vehicle fleet, particularly for individual transport, is an important and prevalent issue in the region owing to the challenges it poses in terms of congestion, equitable use of public space and the adverse effects of automobiles on urban mobility. In recent years, diesel consumption has grown in comparison with other automotive fuels, owing mainly to its lower price and the uptick in individual use of sport utility vehicles (SUVs), most of which are equipped with diesel engines. Generally, diesel is cheaper because it is taxed less, as this fuel is typically used in cargo transport, collective passenger transport and agricultural activities. This trend has led to a growing imbalance between product demand and supply in Latin American refineries, with gasoline surpluses and diesel shortages, and worsening local air pollution in cities, since diesel engines often emit higher levels of soot and sulfur oxides (SO<sub>2</sub>). In terms of the type of fuel, gasoline engines still dominated the global passenger light-duty vehicle market in 2010, followed by diesel engines, which accounted for roughly 40% of the European and Indian markets (IEA, 2012). In addition to the higher consumption of diesel resulting from the expansion of the vehicle fleet, there has been a notable increase in the number of heavy-duty vehicles (trucks), as shown in figure 1. The figure shows that the number of trucks in the region increased on a per capita basis, especially in Panama. Although this could be a reflection of stronger economic growth, it should be carefully analysed since, in several countries of the region, transport companies' excess supply has given rise to transport prices that are lower than real costs or do not cover the fixed costs of equipment maintenance. The expansion of motorization is also the result of vehicles remaining in use beyond the end of their useful life, as will be examined below. Figure 1 Latin America (selected countries):<sup>a</sup> truck fleet, around 2007 and 2017 (Vehicles per 100,000 inhabitants) **Source**: Prepared by the author on the basis of data from the Economic Commission for Latin America and the Caribbean (ECLAC). <sup>a</sup> Data for all countries are from 2007 and 2017, except in the case of Argentina, the Plurinational State of Bolivia, Colombia, Ecuador, Mexico, Nicaragua, Panama, Paraguay and Peru, where data are from 2007 and 2016. #### B. Age of the vehicle fleet and related emissions It is important to analyse the age as well as the number of trucks in service, although this information is more difficult to extract from national statistics and often corresponds to an underestimation of the real fleet age, as shown in figure 2. Having information on the age of the fleet will allow stakeholders to identify real opportunities to incorporate better technologies that will increase operations' energy efficiency. This figure shows that the average age of the truck fleet in Latin America is almost double that of OECD countries. This higher average age gives rise to externalities such as increasing emissions of polluting gases, reducing the quality and safety of transport services, increasing fuel consumption, and raising noise levels. These older vehicles lack active and passive safety features for the protection of occupants, which will ultimately affect the number of deaths caused by traffic accidents. Therefore, renewing the vehicle fleet could improve road safety, reduce fuel use, lower emissions and cut the cost of services by generating operating savings. (ECLAC, 2014a). Figure 2 Latin America and the Caribbean (14 countries) and the Organization for Economic Cooperation and Development (OECD) (4 countries): age of truck fleet (Years) **Source**: Prepared by the author on the basis of Inter-American Development Bank (IDB), *El transporte automotor de carga en América Latina, soporte tecnológico de la producción y el comercio*, Washington, D.C., 2017. Moreover, other transport equipment, such as trailers and semi-trailers, have been in service for more than 18 years (28%) and more than 13 years (40%). While these mobile units do not have a built-in engine and thus do not produce emissions, their age could increase the likelihood of some of their components failing if they are not properly maintained. According to the European emissions standards for diesel engines, commonly known as Euro, a 2003 diesel truck (15 years in service) should comply with the Euro III standard, while a 2011 truck (7 years in service) should comply with Euro V, as shown in table 1. By 2017, only four countries in South America (Argentina, Brazil, Chile and Colombia) had implemented emissions standards stricter than Euro III. Compliance with Euro III was required in Peru and Uruguay. Standards in the Bolivarian Republic of Venezuela, Ecuador and the Plurinational State of Bolivia were weaker than Euro III, while Paraguay had no vehicle emissions standards in place (GFEI, n/d). | | | (g/KVVII) | | | | | |----------|-----------------------|--------------|-----|------|-----|-------| | Туре | Date | Test cycle | со | НС | NOx | PM | | Euro I | 1992, < 85 kW | | 4.5 | 1.1 | 8 | 0.612 | | | 1992, > 85 kW | F.C.F. D. 40 | 4.5 | 1.1 | 8 | 0.36 | | Euro II | Oct. 1996 | ECE R-49 | 4 | 1.1 | 7 | 0.25 | | | Oct. 1998 | | 4 | 1.1 | 7 | 0.15 | | Euro III | Oct. 1999<br>EEV only | ESC & ELR | 1.5 | 0.25 | 2 | 0.02 | | | Oct. 2000 | | 2.1 | 0.66 | 5 | 0.10 | | Euro IV | Oct. 2005 | ESC & ELR | 1.5 | 0.46 | 3.5 | 0.02 | | Euro V | Oct. 2008 | | 1.5 | 0.46 | 2 | 0.02 | | Euro VI | Jan. 2013 | ESC & ELR | 1.5 | 0.13 | 0.4 | 0.01 | **Source**: Prepared by the author on the basis of information from the European Union. **Note**: EEV: Enhanced environmentally friendly vehicles. # I. Greenhouse gas emissions and energy consumption Air pollution poses a significant risk to human health. It was estimated to cause 4.2 million premature deaths worldwide per year in 2016 owing to exposure to small particulate matter of 2.5 microns or less in diameter (PM<sub>2.5</sub>), which causes cardiovascular and respiratory disease, and cancers. By reducing air pollution levels, countries can reduce the burden of disease from stroke, heart disease, lung cancer, and both chronic and acute respiratory diseases, including asthma (WHO, 2018). When analysing the energy consumed and fuel emissions in the transport sector the different phases in the processes that underpin the provision of transport for people or goods must be considered (see table 2). The first phase accounts for the energy expended in the steps required to extract the primary energy source and deliver the fuel to the vehicle, or well-to-tank (WTT). The second phase leads to motive power, whereby the energy stored in the vehicle's tank (or battery) is converted into traction power that can move the vehicle and its payload, or tank-to-wheel (TTW). WTT and TTW analysis are sometimes combined to calculate the total energy consumption involved in the energy transformations and the vehicles' operational characteristics, known as well-to-wheel (WTW). Alternative fuels are an important part of the public discussion on transport and, although most reduce greenhouse gas emissions and dependence on oil products, few reduce final energy consumption. The details and potential of each alternative fuel are outlined below. ## II. New combustion technologies for mobility and cargo logistics As discussed in the previous section, the transport sector uses mainly non-renewable fuels, particularly diesel, because of its competitive edge over alternatives and the difficulties of replacing it on a large scale. However, automobile manufacturers have been developing increasingly efficient engines that use other sources of energy, such as natural gas, liquefied petroleum gas (LPG), electricity, biofuels and hydrogen. The development and massification of this new generation of vehicle not only depend on engine combustion technology, but also a series of other factors including fuel availability, supply network coverage and the availability of maintenance and spare part services. With regard to cutting-edge technology, such as electromobility, hydrogen or even natural gas, energy efficiency savings and reducing other negative externalities, such as pollution in its various forms, justify not only private but also public investment given the social benefits that these technological changes could bring to society as a whole. Hybrid propulsion systems in buses are one example, as they can reduce fuel consumption by up to 30%, depending on the type of journey, but they still require around 25%-30% more investment than conventional options. Some European Union countries have taken various measures to promote vehicle replacement in order to take advantage of this technological shift. In Belgium, for example, car owners receive bonuses for replacing old cars with ones that produce CO<sub>2</sub> emissions lower than 146 gr/km. In Stockholm, a congestion charge is applied to non-electric vehicles. In other countries, highway tolls also depend on a vehicle's emission levels (UNECE, 2015). Some energy sources used for transport around the world, including their main characteristics and differentiating elements, are set out below and their relative market penetration analysed. Table 2 CO, emissions produced and energy consumed during the well-to-tank, tank-to-wheel and well-to-wheel stages | Vehicle type | | CO <sub>2</sub> emissions<br>(g/km) | | | Energy consumed<br>(MJ/100km) | b | |---------------------------------------------------------------------------------------|-------------|-------------------------------------|------------|---------|-------------------------------|---------| | , | WTT | TTW | WTW | WTT | TTW | WTW | | Electric | 78 | 0 | 78 | 118 | 52 | 170 | | Gasoline and electric hybrid | 36 | 75 | 111 | 52 | 116 | 168 | | Diesel and electric hybrid | 36 | 68 | 105 | 52 | 107 | 159 | | Biodiesel | -101 to -22 | 125 | 44 to 103 | 45-437 | 163 | 207-600 | | B7 – diesel containing up to 7%<br>v/v fatty acid methyl esters (FAME)<br>(Biodiesel) | 14-19 | 120 | 137-140 | 31-56 | 163 | 193-219 | | Ethanol | -127 to 30 | 146 | 19-176 | 187-427 | 204 | 391-630 | | E10 – gasoline containing<br>up to 10% v/v ethanol | 17-28 | 150 | 166-178 | 48-64 | 204 | 252-268 | | E85 – gasoline containing<br>up to 85% v/v ethanol | -82 to 29 | 143 | 61-171 | 142-312 | 199 | 341-459 | | Compressed natural gas<br>(CNG) (European Union mix) | 30 | 132 | 163 | 38 | 232 | 271 | | Biomethane | -290 to -33 | 132 | -158 to 99 | 231-503 | 232 | 463-736 | | Liquefied petroleum gas (LPG) | 17 | 142 | 160 | 26 | 216 | 241 | | Gasoline | 29 | 156 | 185 | 39 | 211 | 250 | | Diesel | 25 | 120 | 145 | 33 | 163 | 196 | Source: Joint Research Centre of the European Commission (JRC), "Well-to-Wheels analysis of future automotive fuels and powertrains in the European context", WELL-TO-WHEELS Report Version 4.a. 2014 #### A. Biofuels Biofuels are already included in the transport fuel list (for example, E10, E85 and B7) and infrastructure is in place to supply them in areas where they are widely used (for example, ethanol in Brazil). They are currently the most commonly-used alternative fuels and are blended with conventional fuels (ethanol-gasoline and biodiesel-diesel). A gasoline automobile works better with a blend containing up to 20% ethanol, which does not require engine modifications, as it increases the engine's power and decreases consumption. At the global level, biofuels accounted for 2% of fuels used for transport worldwide in 2012 and this share is expected to continue growing, to 3% by the end of the current decade, 3.8% by 2030 and 4.6% by 2040 (IEA, 2017b). Biofuels are obtained from a wide range of materials and can be used directly or mixed with conventional fossil fuels. They include bioethanol, biomethanol, biodiesel made from vegetable oils, dimethyl ether (DME) and organic compounds, and are grouped by generation. First-generation biofuels include ethanol produced using crops rich in sugar or starch and fatty acid methyl esters (FAME) biodiesel made from vegetable oils. Second-generation biofuels are made from non-food raw materials, lignocellulosic materials, the organic elements of solid and liquid waste, vegetable oils, animal fats, and forest and agricultural waste. They include bioethanol and biodiesel produced using conventional technology, starch bases or energy crops. Production technologies for this generation of biofuels tend to be more complex and costlier than those of first-generation biofuels, and are generally considered more sustainable, with the potential to produce fewer greenhouse gas emissions. Third-generation biofuels include those made from algae, biomass hydrogen and synthetic methane. Most current production uses agricultural crops such as corn, sugarcane and rapeseed, although just 1% of globally available arable land is used to produce biofuels. Overall, 16% of global vegetable oil supplies (rapeseed, soybean, palm and sunflower) were used for biodiesel production, and around 15% of the world's corn was used to make bioethanol. Based on an assessment of the availability of sustainable biomass, it is estimated that biofuels derived from forest residue and waste could supply between 12% and 15% of energy to the transport sector in 2030, representing total greenhouse gas savings of around 8% to 11%. The cost of vehicles and infrastructure is not a barrier to the introduction of biofuels to the market, as, up to certain concentrations, they are already compatible with the existing fuel distribution infrastructure. The highest blends require some vehicle modifications, notably the materials used for fuel lines and engines. Second- and third-generation biofuel production requires more start-up capital, so long-term initiatives are essential to finance this type of project. Biofuel blends could produce slightly less particulate matter, carbon monoxide (CO) and hydrocarbon (HC) emissions, but increase nitrogen oxide (NO<sub>x</sub>) emissions and produce other pollutants such as aldehydes. Bioethanol blends would reduce NO<sub>x</sub> emissions significantly. ### B. Natural gas and biogas Natural gas and biomethane are considered to be the same fuel ( $CH_4$ , methane). However, natural gas is a fossil fuel, while biomethane comes from renewable energy sources or raw materials (energy crops, agricultural waste, organic fraction of livestock manure or sewage sludge) and must be treated for use in engines. Global natural gas reserves are accessible and vast, exceeding oil reserves considerably. Moreover, it is estimated that available reserves have increased almost threefold in recent years, thanks to new extraction techniques. Technological maturity has given rise to a wide range of automobiles, buses and trucks with combustion engines that run on compressed natural gas (CNG) or liquefied natural gas (LNG), as natural gas is the only alternative fuel that can compete with the energy efficiency and performance of diesel engines (JRC, 2014). In the case of CNG, natural gas must be compressed to 200 bar and dispensed in a gaseous state. LNG must be handled in a cryogenic liquid state (at - 162 °C). The construction of regasification terminals has provided non-producer countries with access to LNG from international markets at more competitive prices. There is an extensive refuelling network in some countries that can supply both types of gas to the same facility thanks to satellite regasification plants. The gases are distributed through gas pipelines or by tankers (in the form of LNG). Driving autonomy ranges from 500 to 900 km with CNG (plus reserve gasoline), while it exceeds 1,000 km with LNG, and is even higher with converted mixed-fuel engines (diesel-gas). Using natural gas and biomethane produces low levels of polluting emissions (mainly $NO_x$ ), almost zero $SO_x$ emissions and zero particulate matter emissions. Another advantage is that noise levels are lower compared with traditional fuels. #### C. Liquified petroleum gas (LPG) LPG is a mixture of hydrocarbons (propane, butane and small percentages of propylene and butylene) and is produced naturally during natural gas processing and oil refining. It is stored in liquid form in pressurized tanks but is converted to vapour in the vehicle's engine. It is distributed to service stations in tankers and has an extensive supply network in countries where it is widely used. As LPG is produced along with natural gas and oil products, it is expected to remain readily available. Renewable bioLPG can also be produced through the gas-to-liquids (GTL) process, which synthesizes natural gas into liquid fuel. In the future, there are plans to use wind energy to synthesize liquid fuels by harnessing excess electricity and capturing atmospheric carbon in the form of CO<sub>2</sub>, known as power-to-liquids (PtL). The use of LPG in Otto cycle (spark ignition) engines has been rising in recent years, driven by the supply of enabled vehicles and growth in charging infrastructure, which is very similar to that of traditional fuels in terms of equipment and cost. Moreover, the main markets for this type of fuel have developed conversion models for vehicles that are already in service and are constantly producing parts, so those vehicles can continue to be used. The latest technological advances have shown that the injection of LPG in liquid form improves volumetric efficiency and produces a cooling effect that enhances engine efficiency. Thanks to its simple chemical composition and gaseous combustion, LPG mixes easily with the air in the engine and its combustion properties are generally superior to those of liquid fuels. Burning LPG produces virtually no emissions of particulates and less NO<sub>x</sub>, HC and CO than traditional fuels (JRC, 2014). #### D. E-mobility Electric transport, or e-mobility, is being developed aggressively by several vehicle manufacturers, who are constantly improving battery technology in terms of performance and cost. Meanwhile, the network of charging stations is still being developed to improve recharging times and the number of supply points. An electric vehicle's autonomy is determined by the number of batteries it has, and each additional battery also means extra weight to be propelled by the engine. The greater the weight of the whole vehicle, the greater its energy consumption. Interurban travel it is still limited by low autonomy, but hybrid vehicles are a possible option. Initially, the intensive use of electric vehicles will require significant energy storage measures to balance supply and demand within the network. In the long term, it is expected that e-mobility will be part of an intelligent and controlled network that provides decentralized electricity storage and regulates electric vehicle charging according to the availability of renewable electricity. This would mean more efficient use of generation and storage capacity in urban environments, as vehicle batteries could be used to supply electricity to the network when renewable electricity generation is low. Vehicle electrification helps to reduce greenhouse gases and noise levels, and electric vehicles do not produce emissions of NO<sub>x</sub> or particulate matter when operating in electric mode. Nevertheless, sustainability depends on the source of electricity generation, so it is fundamental that countries move towards a renewable and low-carbon energy mix to ensure that this solution is sustainable. ## E. Hydrogen Hydrogen (H<sub>2</sub>) is obtained through steam methane reforming (the decarbonization of hydrocarbons) or from renewable energy (electrolysis). Production methods differ in terms of cost, environmental performance, efficiency and technological maturity. Hydrogen can be stored in large quantities in underground salt caverns or as part of a network's natural gas mix. It can be converted to synthetic methane (CH<sub>4</sub>) by reacting it with CO<sub>2</sub> produced from biogas waste products or taken from the atmosphere. This synthetic natural gas (SNG) has the same chemical composition as natural gas and biomethane, and can therefore be injected as a blend (up to 5% of H<sub>2</sub> is permitted in the gas network). In terms of mobility and fuel supply, it does not require a change in user habits and offers substantial benefits with respect to environmental and energy sustainability. At present, hydrogen is produced in large quantities mainly for industrial and refining purposes, hydrodesulfurization and other production processes. However, hydrogen used in fuel cells must be highly purified so as not to affect their performance. This fuel is considered one of the key large-scale energy solutions in the long term, but its limited autonomy must be resolved. A tank of hydrogen stored at 800 bar produces 13% of the energy that the same amount of diesel would generate. In 2008, the public and private sectors joined forces to form the Fuel Cells and Hydrogen Joint Undertaking (FCH JU), with the aim of promoting coordination and collaboration throughout the sector and accelerating the introduction of fuel cell and hydrogen technologies to the market. # **III.** Recommendations A diverse range of renewable and low-carbon energy sources are needed to achieve sustainable, safe and affordable mobility and logistics. Therefore, as highlighted by ECLAC, mobility and logistics policies should be more integrated and managed through a systemic approach. To increase efficiency and reduce costs within the system, not only will a wider range of technologies and fuels be needed, but also new planning tools, supportive regulatory frameworks and greater political dialogue at both the national and regional levels. Developing countries can benefit from regional integration in terms of capacity-building, the adoption of best practices, institutional and regulatory solutions, and the development of common methodologies for gathering and measuring data. There has been some success in the region in terms of technological upgrading, for instance, the market share of vehicles run on CNG in Argentina and on ethanol in Brazil is close to 30% (IEA, 2012). These regional examples highlight the window of opportunity that local energy resources provide for some markets and which must be developed through the creation of knowledge and value-added services. Thus, a long-term strategy involving the public and private sectors is needed that promotes coordination between producers, importers, distributors and service stations for final consumers in order to facilitate the initial commercialization phase, i.e. when there are no "technology push" or "market pull" forces in play owing to weak economies of scale and consumers' reluctance to pay the difference (Grubb, 2004). The experience in hybrid vehicles confirms that commercially available technology may be slow to gain significant market share (IEA, 2012). Although hybrid engines have been available since 1997, it took 13 years to reach a 1% share of global sales. Therefore, it may prove difficult for new technologies to enter the market without the firm support of government policies. The Urban Electric Mobility Initiative was reviewed at the United Nations Climate Summit in 2014, where it was noted that substantial investment would need to be made in charging infrastructure in order to increase the market share of electric vehicles to 30% by 2030. Infrastructure investments remain costly owing to expensive equipment and the need to build service stations in sought-after areas (by busy roads or motorways). Successful development of the market requires stronger demand from consumers for sustainable transport and greater willingness of the industry and companies to provide these transport services. Service station fuel prices play a key role in the introduction of alternative fuel vehicles (AFVs) on the market. As a result, natural gas is cheaper than gasoline or diesel in several countries, facilitating the amortization of vehicles. The main barrier to the development of the CNG market is the lack of a refuelling station network, and despite the significant investment required (5–7 times higher than for conventional fuels), it is lower than that needed for other alternative fuels. Infrastructure development for the use of LNG (as fuel for trucks) can be addressed by the industry, provided that there is certainty about future market volume and there are incentives for customers to buy these vehicles despite their higher price. In non-OECD developing countries, the high prices of AFVs (for example, hybrid or electric vehicles), the unsustainable burden of subsidies and the lack of infrastructure could limit their widespread use. Fiscal measures such as fuel tax equalization, the elimination of traditional fuel subsidies and the prioritization of funds and incentives for research and development (R&D), could encourage markets to seek cleaner fuel options. R&D is important because of its capacity to support replacement technologies in the initial development stage, by strengthening regional capacity, given the region's wealth of raw materials, while reducing high investment risks. When seeking the ideal combination of regulatory framework components, consideration must be given to the fact that command and control mechanisms, economic incentives and information campaigns are not mutually exclusive, although they have different purposes. Therefore, different countries can prioritize different measures depending on their needs and the institutional capacity to implement the regulatory framework. All the technologies presented in this document aim to boost energy efficiency, by reducing dependence on diesel and the pollution that it generates. However, they are not solutions to the ongoing mobility problems in cities, such as congestion; the fair use of spaces by pedestrians, cyclists, motorcyclists and drivers; and the saturation of the existing road infrastructure. Hence, the recommendation is to promote collective or shared mobility through carpooling and the coopetition and strengthening of public transport, by expanding other forms of mass transport, such as trains, which together could ensure sustainable development. Apart from the need to analyse more thoroughly the duties and taxes levied on each type of vehicle fuel, listed below are some additional good practices to follow for efficient transport in a sustainable road sharing environment. Scrapping policies. New automobiles join the motorized vehicle fleet each year, while old and highly polluting cars remain in service. The authorities must ensure that the vehicles withdrawn from circulation (through subsidies for vehicle replacement) are actually destroyed and turned into scrap, and not sent to smaller cities or rural areas, in which case the subsidy does not fulfil its objective; on the contrary, the vehicle fleet expands, and the problems of pollution and safety are simply transferred from one place to another. The composition of the vehicle fleet is crucial to reducing greenhouse gases, as larger vehicles produce more emissions, regardless of the fuel used. Therefore, clean last mile access restrictions have been placed on bigger vehicles, while the use of motorcycles and small cars that are ideally electric or use emission-reducing technology is encouraged. Adoption of good driving practices. Drivers should simultaneously adopt practices such as eco-driving (learning to operate vehicles in a more energy-efficient manner); reducing distances travelled in vehicles; not leaving the vehicle idling by turning off the engine when not in use; and ensuring that trucks do not return empty, as this accounts for 13% of truck-kilometres in international transport (McKinnon, 2012). Drivers play an important role in the technological advances of AFVs, as they provide the necessary feedback to correct operating weaknesses and/or note the strengths that contribute to widespread growth in the AFV fleet. Governments must support alternative fuel production, transport systems and relevant infrastructure, while respecting the principle of technological neutrality.1 Governments must focus their attention on diversifying the land transport energy mix, where a combination of alternative fuels that have been outlined in this report could have the desired impact. Specific transport operations may require different types of fuel from those used by competitors depending on investment capacity and charging infrastructure located near the operations centre. Thus, all local variables must be examined to maximize the use of existing infrastructure and technology. Generating evidence and data will be fundamental to transport operators' decision-making processes, given their current doubts about how AFVs work and about the associated supply network. Therefore, in addition to subsidizing the purchase of these vehicles, efforts should focus on creating a charging station network and duly informing end users of development plans in order to speed up change of this magnitude. Source: Prepared by the author. 8 Technological neutrality is the elimination of vested interests or political bias in the selection of the most suitable technology according to the specific needs and requirements of a country for the development, acquisition, use or commercialization of vehicles and related infrastructure. # **IV.** Bibliography - ECLAC (Economic Commission for Latin America and the Caribbean) (2017a), "La demanda de energía del sector transporte y cambio climático en Honduras", *Project Documents* (LC/TS.2017/34), Santiago. - (2017b), "Las energías renovables no convencionales en la matriz de generación eléctrica", Project Documents (LC/TS.2017/1), Santiago. - \_\_\_\_(2016), Estadísticas de producción de electricidad de los países del Sistema de la Integración Centroamericana (SICA) (LC/MEX/TS.2017/21), Ciudad de México. - (2014a), "Eficiencia energética y movilidad en Latinoamérica y el Caribe: una hoja de ruta para la sostenibilidad", Project Documents (LC/W.602/Rev.1), Santiago. - \_\_\_\_(2014b), "Antecedentes generales sobre subsidios a la renovación de buses urbanos", Santiago, 28 April, unpublished. - \_\_\_\_(2013a), "Cálculo y etiquetado de la huella de carbono", paper presented at the seminar "Huella de carbono e inventarios corporativos", Buenos Aires, 7–9 March. - \_\_\_(2013b), "Huella de carbono, exportaciones y estrategias empresariales frente al cambio climático", *Project Documents* (LC/W.559/Rev.1), Santiago. - \_\_\_\_(2008), "Aporte de los biocombustibles a la sustentabilidad del desarrollo de América Latina y el Caribe: elementos para la formulación de políticas públicas", Project Documents (LC/W.178), Santiago. - ESCAP (Economic and Social Commission for Asia and the Pacific) (2015), Review of Developments in Transport in Asia and the Pacific, Bangkok. - \_\_\_\_(2008), Energy Security and Sustainable Development in Asia and the Pacific, Bangkok. - European Commission (2015), State of the art on Alternative Fuels Transport Systems in the European Union. Final Report. - European Expert Group on Future Transport Fuels (2011a), Future Transport Fuels [online] https://ec.europa.eu/transport/sites/transport/files/themes/urban/cts/doc/2011-01-25-future-transport-fuels-report.pdf. - \_\_\_\_(2011b), Infrastructure for Alternative Fuels [online] https://ec.europa.eu/transport/sites/transport/files/ themes/urban/cts/doc/2011-12-2nd-future-transportfuels-report.pdf. - Feng, W. and M. Figliozzi (2012), "Bus fleet type and age replacement optimization: a case study utilizing King County Metro fleet data", Proceedings of the Conference on Advanced Systems for Public Transport (CASPT), Santiago, June. - GFEI (Global Fuel Economy Initiative) (n/d), "GFEI Toolkit" [online] https://www.globalfueleconomy.org/in-country/gfei-toolkit. - Grubb, M. (2004). "Technology innovation and climate change policy: An overview of issues and options", *Keio Economic Studies*, vol. 41, No. 2. - IDB (Inter-American Development Bank) (2017), El transporte automotor de carga en América Latina, soporte tecnológico de la producción y el comercio, Washington, D.C. - IEA (International Energy Agency) (2017a), Energy Technology Perspectives 2017: Catalyzing Energy Technology Transformations, June. - \_\_\_(2017b), World Energy Outlook 2017: A world in transformation, November. - \_\_\_\_(2012), Energy Technology Perspectives 2012: Pathways to a Clean Energy System, Paris. - IGU (International Gas Union) (2012), Natural Gas Conversion Pocketbook [online] http://agnatural.pt/documentos/ver/natural-gas-conversion-pocketbook\_fec0aeed1d2e6a84b27445ef096963a7eebab0a2.pdf. - JRC (Joint Research Centre of the European Commission) (2014), "Well-to-Wheels analysis of future automotive fuels and powertrains in the European context", Well-to-Wheels Report Version 4.a. - McKinnon, A. (2012), "Improving the Energy Efficiency of Freight Transport: A Logistical Perspective" [online] https://www.chalmers.se/en/areas-of-advance/energy/Documents/Chalmers%20Energy%20Conference%20 2013/Presentations/Alan%20McKinnon.pdf. - OLADE (Latin American Energy Organization) (2013), Simulación de medidas de eficiencia energética en los sectores industrial y transporte de América Latina y el Caribe al Año 2030. - SE4ALL (Sustainable Energy for All) (2013), *Global Tracking Framework*, Washington, D.C., World Bank Group. - Sen, A. K. and others (2014), "Effect of ethanol addition on cyclic variability in a simulated spark ignition gasoline engine", *Meccanica*, vol. 49, No.10. - UNECE (Economic Commission for Europe) (2015), Transport for Sustainable Development: The Case of Inland Transport. - United Nations (2003), Blue Corridor Project: on the use of natural gas as a motor fuel in international freight and passenger traffic. Final Report of the Task Force, Geneva. - WHO (World Health Organization) (2018), "Ambient (outdoor) air quality and health" [online] https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.