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Native Dependence and the Spatial Reproductive Value
Andrei Rogers 
Cecile Hemez

1. INTRODUCTION
The introduction of regions into classical mathematical 

demography has added several interesting new dimensions to 
established indices such as stable equivalent population, 
momentum, and reproductive value. We shall focus on the last of 
these three measures in this paper and show how its 
generalization to a multiregional setting provides insights 
regarding the impacts of spatial population dynamics.

In doing so we shall distinguish between models that are 
closed and open to international migration and between models 
that are native independent and native dependent (Ledent and 
Rogers, 1988). Following Espenshade et al. (1982) and Arthur and 
Espenshade (1988), our open models will only consider 
reproductive regimes that are below replacement level. Within 
that context, this paper develops, for example, the notion of the 
spatial reproductive value of an average immigrant of a 
particular age. It then disaggregates this measure to 
differentiate immigrants who arrive at different entry points in 
the United States.

Below replacement level fertility has become an important 
characteristic of economically advanced societies such as the 
United States, Canada, Japan, Germany, Italy, Austria, the United 
Kingdom, the Soviet Union, and France. In studying the long-run
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implications of such demographic behavior, demographers have 
shown that the size of the future national population in such 
instances is primarily determined by the magnitudes of the 
country's net reproduction rate and its immigration flows. They 
have demonstrated that a fixed level of net immigrants with a 
specific age composition, entering a country experiencing an 
unchanging regime of age-specific mortality and below-replacement 
fertility, ultimately will generate a stationary ("zero growth") 
population, whose size is strictly determined by the size and age 
composition of the stream of the immigrants and by the net
reproduction rate of the host country a rate that the
immigrants and their descendants are assumed to ultimately adopt. 
(Espenshade et al., 1982; Mitra, 1983).

2. INTRODUCING NATIVE DEPENDENCE AND IMMIGRATION INTO A
BIRTHPLACE-SPECIFIC MULTIREGIONAL POPULATION
2.1 Introducing Native Dependence
In recent years, techniques for constructing multistate life 

tables and for projecting multistate populations have been 
fruitfully applied to the study of a number of demographic 
phenomena, ranging from migration and population redistribution 
(Rogers and Willekens, 1986) to marital status dynamics (Schoen 
and Baj, 1984; Espenshade, 1983) to labor force participation 
(Smith, 1982) and to fertility patterns (Suchindran and Koo,
1980). These applications have recognized that the Markov 
assumption underlying such multistate models that age-specific
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transition intensities depend only on the currently occupied 
state or status and not on the duration of this occupancy or on
the history of previous occupancies is a restrictive assumption
that should be relaxed whenever feasible.

An important effort to include the influences of previous 
occupancies in multistate analysis has been the incorporation of 
a place-of-birth dependence. For example, Ledent (1981) 
demonstrated that introducing place-of-birth-specific (native- 
dependent) rates of migration into multiregional life table 
calculations dramatically affected estimated values of life 
expectancies and survivorship probabilities. Philipov and Rogers
(1981) showed that parallel impacts also arose in the associated 
native-dependent multiregional population projections. More 
recently, Ledent and Rogers (1988) extended the classical 
unistate model to incorporate native dependent multistate 
dynamics.

The introduction of native dependence into the multiradix/ 
multistate model is accomplished by computing an independent 
uniradix multiregional life table for each place-of-birth- 
specif ic cohort. The mortality and migration intensities are 
those experienced by that cohort, as are the fertility rates that 
are combined with the life table's person-years lived variables 
to define the characteristic matrix: ifrc(r) in equation (1)
or i|rd(f) in equation (2) , namely,

3



if derived from the continuous-time formulation of the projection 
process (Rogers, 1975) and

E exp[-i(x+n) ] —  
x=a-n

p-n ^x^x + '̂x*rJ-‘x*n
[Q] = i|fd(r) {£>} = {£>} (2)

2

if derived from its discrete-time formulation (Ledent and Rogers, 
1988).

The vector {Q} is a vector of regional stable equivalent 
births, L(x) is the matrix of life table person-years lived, and 
F(x) is the diagonal matrix of age-specific birth rates.
Solving for the intrinsic rate, r, by, say, the method of 
functional iteration (Keyfitz, 1968) one also obtains the vector 
{Q} (Ledent and Rogers, 1988). The intrinsic rate of growth is 
the value of r that gives the matrix ijrc(r) in equation (1) 
or i|rd(r) in equation (2) a characteristic root of unity; the 
corresponding characteristic vector is denoted by (Q).

To introduce native-dependence, the matrix product F3JJ]C in 
equation (1) or (2) is replaced by

where {p)Fx = a diagonal matrix of regional birth rates

m
(3)

|p=±

experienced by the cohort born in region p;



(p)Lx = a matrix of person-years lived by the cohort 
born in region p; and 

<p>Af = a matrix with all of its elements equal to zero 
except for a one in the row and pr1 column 
position.

The matrix {p)M  ensures that only the pr1 column of (p)Lx 
enters into the calculations for the pr1 radix. In the likely 
event that place-of-birth-specific fertility rates are 
unavailable, assume that

where Lx is a matrix whose pr~ column is the pr~ column of (p)Lx. 
The iterative algorithm used to solve for r remains unchanged.

2.2 Introducing Immigration
Demographers interested in learning how the standard' 

"closed" unistate stable population model can be "opened" to 
include international migration can turn to two streams of 
literature for enlightenment: the continuous-time formulation
discussed by Espenshade et al. (1982), Mitra (1983), Mitra and 
Cerone (1986), and Cerone (1987), or the discrete-time 
formulation described by Pollard (1966, 1973) and Keyfitz (1968). 
This literature reveals that for a national population, an

(p) p s F 
x  X  X for all p = l, 2, m

and simplify equation (3) to:

(4)
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ultimate consequence of a fixed stream of immigration is a 
stationary population if fertility is below replacement level, a 
linearly increasing population if fertility is exactly at 
replacement level, and an exponentially increasing population if 
fertility is above replacement level.

In this paper's examination of the open model, attention 
will be focused on results for a below-replacement level 
fertility regime and a fixed net immigration vector. (One can, 
of course, deal with the case of a gross immigration flow by 
treating emigration as a form of death.)

The continuous-time model set out in Espenshade at al.
(1982) is defined by two fundamental relationships, one relating 
to total annual births and the other to total population. The 
derivation of the multiregional form of their two basic 
relationships is straight-forward. We begin with the matrix 
expression for the vector of total annual regional births {B(t)}, 
find the constant vector of regional annual births to foreign- 
borns {By}, and then solve for the vector of regional stationary 
equivalent populations {N}.
i. ) Total Annual Births by Region (State) = Annual Births to 

Native-borns + Annual Births to Foreign-borns:

where the age-specific foreign-born population by region of 
residence at age a is

(5)
= fP m(a) ((a) (B(t-a) }da + fP m(a) {Hx(a)} da

J a - ~ J a
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7

{Hx(a)} = fa 1(a) Í (x)-1{i (x) }dx (6)Jo "
and where (i(x)} is a fixed vector of regional annual migration 
streams at age x, {N(a,t)} is a vector of regional populations at 
age a at time t, m{a) is a matrix of annual regional fertility 
rates at age a, a and j3 are the lower and upper limits of the 
childbearing ages, respectively, and {(a) is a matrix of regional 
life table probabilities of survival from birth to age a, 
disaggregated by region of birth and region of residence (Rogers, 
1975). Following Espenshade et al. (1982), we shall focus on the 
evolution of the female population, which like births may be 
represented as the sum of two subpopulations, native-born and 
foreign-born.
ii.) Total Population bv Region (State) = Native-borns + 

Foreign-borns:

{N( t)} = [~t (a) {£( t-a)} da + f {HT(a)}da (7)
J o ~ J o

The long-run behavior of (B(t)} and {N(t)} under a 
nationally below replacement level fertility regime can be 
identified by a multistate matrix generalization of the argument 
in Espenshade et al. (1982), with the condition for achieving an 
asymptotic limit now being that the dominant characteristic root 
of the net reproduction matrix R0 be less than unity. In that 
event the asymptotic limit of (B(t)} is
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where

{Bx} = f^m(a) {Hx(a)} da
J  a  ~

(9)

Finally, substituting a constant vector of births {B} into 
equation (7) yields:

{N} = e(0) {B} + {Hj (10)

where e(0) is the life expectancy at birth matrix f t(a)da, and
J o "

{Hjj is the vector of regional foreign-born populations
/» coI {Hj(a)}da. Finally, replacing {B} by its value in equationJ o

(8) gives

{N} = e (0)
( \ 
I-Rr

-1
+ {Hj-} (11)

which is the multistate stationary equivalent population in this 
model. Note that the inverse may be expressed as the sum of a 
geometric series, i.e.,

I-Rr
V 1

= I+Rq+Rq +Rq +. .. = E R0k.k=*Q -

3. THE SPATIAL REPRODUCTIVE VALUE IN A CLOSED POPULATION 
3 .1 The Nonspatial Reproductive Value
The concept of reproductive value, as developed by Fisher 

(1929), revolves around the notion of regarding the offspring of



a child as the repayment of a debt. Specifically if the birth of 
a baby is viewed as a loan of a life and if the future offspring 
of this child are viewed as the subsequent repayment of this 
loan, suitably discounted at the annual rate r and compounded 
momently, then the present value of the repayment may be taken to 
be

f  exp(-za)m(a)S(a)da (12)J o

Equating the loan with the discounted repayment, one gets

1 = f exp(-xa)m(a) t(a) da, (13)
J O

which is recognizable as the characteristic equation used to 
solve for r, the intrinsic rate of growth. Thus, as Keyfitz 
points out,

"the equation can now be seen in a new light: the equating
of loan and discounted repayment is what determines r, r 
being interpretable either as the rate of interest of an 
average loan or as Lotka's intrinsic rate of natural 
increase" (Keyfitz, 1975, page 588).
In the same essay, Keyfitz considers how much of the debt is 

outstanding by the time the child has reached the age x. He 
defines this quantity to be v (x) , the reproductive value at age 
x, where

v(x) = j  exp[-z(a-x) ]/n(a) yj^-da, (14)

and v(0) is scaled to equal unity.



Goodman (1969) develops a somewhat different unistate (and 
hierarchical multistate) formulation starting with a single 
person in the first age group and adopting a discrete age-time 
framework.

3.2 The Native Independent Spatial Reproductive Value 
Keyfitz's arguments have their spatial (multiregional) 

counterparts (Rogers and Willekens, 1978). To develop these it 
is convenient to reexpress equation (14) for arbitrary values of 
v(0), that is,

and n(x) denotes the total discounted number of baby girls 
expected to be born to a woman now aged x. This form of the 
equation immediately suggests the multiregional analog: find the 
(row) vector {v(x)}V such that

V (x) = v(0) f exD\-r la-x) 1 mla) = v(0) n (x) ,

where

v(0) = v(0) f exp {-ra)m(a) 6(a) da = v(0)i|f(r) = 1

(v(x)}'= (vio)}7/* exp [-r (a-x) ] mía) ?(a) [?(*)] _1cfa (15)

= {v(0) }'n(x) , (16)

where
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ív"(O)}7 = í v(0)}/ i* exp (-ra)m(a) f (a) da = {v(0) J'iJr (r) , (17)
Jo ~

that is, where (WO)}7 is the left characteristic row vector 
associated with the unit dominant root of the characteristic 
matrix ijr (r) .

The matrix n(x) represents the expected total number of 
female offspring per woman at age x, discounted back to age x.
The element nrj(x) gives the discounted number of female children 
to be born in region j to a woman now x years of age and a 
resident of region i. The vector {v{x)}' represents the 
reproductive values of x-year-old women, differentiated by region 
of residence. Observe that the elements of {v(x)}7 depend on the 
scaling given to {v(0)}7, the left characteristic vëctor 
associated with the unit dominant characteristic root of the 
characteristic matrix ty(r). Thus in the multiregional model, 
the reproductive value of a baby girl depends on where she is 
born.

Equations (15), (16), and (17) may be given the following 
demographic interpretation. If lives are loaned to regions 
according to the (column) vector (Q) then the amount of "debt" 
outstanding x years later is given by the (row) vector 
{v{x)}', the regional expected values of subsequent offspring 

discounted back to age x. The elements of this vector therefore 
may be viewed as spatial (regional) reproductive values at age x.

A slightly modified perspective of the spatial reproductive 
value is adopted in this paper. Specifically we shall
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distinguish between the terms number and value when referring to 
births in the various regions of a closed multiregional system. 
The two expressions have identical meanings in the uniregional 
model, but variations in regional fertility and mortality 
schedules give them different meanings in any multiregional model 
in which internal migration is represented.

Recall the definition of the multiregional characteristic 
matrix i|r(r) in equations (1) and (2). An element denotes
the discounted total number of daughters born in region j to a 
mother born in region i. The discounted number of female births 
per woman born in a particular region ¡ty(r) = Ejtyj (r), may be less 
than unity. Although this suggests that she does not repay the 
full amount of her "debt" to society, we shall show that this may 
be true only of number but not of value. Thus if the investment 
in one life in a regidn is viewed as a debt of an individual to 
society, then in a stable equilibrium each individual must repay 
that debt to society at an annual interest rate r. The repayment 
does not have to take place in the region of birth, however.
Part of it can occur in other regions, where births may be worth 
more (or less) than in the region of birth. Thus we may conclude 
that individuals pay back their debt to society in values v(0), 
whereas regions pay back their debt in numbers Q. The former 
distribution is defined by equation (17) ; the latter derives from 
equations (1) or (2).

1 2



Spatial reproductive values at age x, v¡ (x), may be 
appropriately consolidated to yield total spatial reproductive 
values, Vj, by means of the relationship

{v}/ = f  {v(x)} fk(x) dx Jo
= {viO)}7/* n(x)k(x)dx 

Jo"
= {v(0)}'n

where k(x) is a diagonal matrix with k¡¡(x) representing the 
number of women at age x in region i, and n is a matrix of total 
discounted number of female offspring associated with that 
population. The total reproductive value of the multiregional 
population then is v = {vj'tl} .

3.3 The Native Dependent Spatial Reproductive Value 
In Section 2.1 of this paper we learned that the 

introduction of native dependence into the multiregional model 
could be accomplished by computing an independent uniradix 
multiregional life table for each birthplace-specific cohort. 
Denote the pr1 cohort's life table survival probability 
matrix (p>i(x) . Retain only the pr1 column of that matrix and 
with it define the p^1 cohort's survival probabilities. Collect 
all such columns to form a composite matrix I (x) to represent the 
survival regime of all cohorts and enter it in place of Í (x) in 
the equations defining the spatial reproductive value. (We 
assume, once again, that birthplace-specific data on fertility 
are unavailable, so the matrix m(a) remains unchanged.)
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Entering í(x) into equations (15) and (17), along with the 
corresponding new value of the stable rate of growth (now denoted 
by r), one obtains the corresponding native dependent values for

4. THE SPATIAL REPRODUCTIVE VALUE IN AN OPEN POPULATION
4.1 The Nonspatial Reproductive Value
In a more recent paper, two of the authors of the original 

Espenshade et al. (1982) article re-examine the topic of 
immigration and the stable population model, focusing on the 
influence of the immigrant stream's age composition (Arthur and 
Espenshade, 1988). By changing the order of integration in the 
equation for the stationary female population equivalent, N, they 
are able to show that

where i?0, as before, is assumed to be less than unity, e(x) is 
the remaining life expectancy at age x, and uv(x) [is] the 
average number of daughters remaining to be born to a female 
immigrant admitted at age x" (Arthur and Espenshade, 1988, p. 
318). As we have seen, v(x) is the reproductive value at exact 
age x.

By expressing the ultimate total stationary population N in 
terms of life expectancies and reproductive values, Arthur and 
Espenshade make explicit the influences that age at admission of 
immigrants has on that population.

the spatial reproductive value.

(18)
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"...migrants contribute to the size of the ultimate 
stationary population in two ways: first, through their
presence in the population and, second, through their 
offspring, who set in motion a chain of descendants from one 
generation to the next. And it is now clear that the age 
distribution of immigrants is a crucial determinant of 
ultimate population size. Because e(x) and v(x) slope 
downward over much of the relevant age range, increasing 
immigrants' ages at admission will typically reduce the 
ultimate stationary population size" (Arthur and Espenshade, 
1988, p. 319).
4.2 The Native Independent Spatial Reproductive Value 
The multistate generalization of equation (18) is 

straightforward (Rogers, 1990). Changing the order of 
integration in

{N] = e(0 )(I-£0)~1f f w(a) I (a) I (x) ~1{i (x)} dx da - J O J O ~ ~

+ f f Í (a) ( (x) _1{i (x)} dx da 
J O J O ~

we find that

{N] = e(0) (I-R0)_1 f z(x) [i {x)} dx + f e(x) {i (x)} dx~ ^  J o "  J o ”

where z(x) denotes the matrix of expected total number of female 
offspring per immigrant woman at age x, discounted back to age x, 
with zr¡(x) representing the expected discounted number of female 
children to be born in state j to an immigrant woman now x years

(19)

(20)
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of age and entering state i (Rogers and Willekens, 1978). The 
matrix z (x) is the open model's counterpart to the closed model's 
matrix n(x) defined in equation (16). To transform z(x) into 
the multistate row vector of reproductive values {v{x)}', one 
needs to premultiply it by the corresponding vector {viO)}', the 
left characteristic row vector associated with the dominant root 
of the net reproduction rate matrix, R0:

{v(0) }' = 0 (0) },R0 (21)

Reproductive values and expected number of offspring are 
equivalent concepts in unistate demography; theÿ are not in 
multistate demography. In the unistate case, v(0)=l, v(x)=z(x); 
but in the multistate case only one state-specific reproductive 
value (the "numeraire") is set equal to unity. Hence one needs 
to adopt the relative weighting (Rogers and Willekens, 1978);

0 (x)}'= Oion'zO) (22)

Following Arthur and Espenshade (1988), let us now simplify 
the analysis and assume that all net immigrants enter at a single 
exact age, x0. Then the integrals disappear, and

{N} = e(0) (I-R0) ~xz(x0) (i (x0)} + e(x) {i (x0)} (23)

Transforming the above to a per immigrant formulation, by 
dividing each N-J by the corresponding ij-fXp), gives
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{Nj} = e(0) {I-R^-^zix^ {1} + e(x0) {1} (24)

which makes clear that for a given age xQ, {Nx} varies as a 
function of z(x0) and e(x0) . As in the unistate case, the 
term e(x0) represents the remaining average lifetime of a new 
immigrant who enters at exact age x0, but the relationship now 
varies by region of entry and residence as well as by age.

4.3 The Native Dependent Spatial Reproductive Value
The procedure for computing the open model1s native 

dependent spatial reproductive value is the same as for the 
closed model's. One replaces the survival probability 
matrix i(x) by its composite counterpart Í (x) in the defining 
equations (19), (20), and (21). Since r=0 in the open model, no 
composite counterpart for the stable growth rate needs to be 
calculated. First compute z(x), using the definitions embedded 
in equations (19) and (20). Then, calculate {v(0)}; using 
equation (21); the corresponding values for all ages x follow 
from equation (22).

5. CONCLUSION
A national multistate population exposed to fixed fertility, 

mortality, and internal migration, and a constant annual number 
and age distribution of immigrants, will ultimately become a zero 
growth stationary population, if national fertility is below 
replacement level. If fertility is at replacement level, the 
population will increase linearly, and if fertility is above that
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level then the growth will be exponential. This can be 
demonstrated both with the discrete-time and the continuous-time 
models.

The ages at which immigrants are admitted can be shown to
make a significant difference in the ultimate population size and
spatial distribution, and so can the region of entry. Multistate
versions of the life expectancy and the reproductive value may be
used to assess these impacts.

Finally, although the numerical illustrations in the
Appendix to this paper deal with regional populations linked by
internal migration streams, many other multistate models come to
mind, in which regions are replaced by statuses, such as marital

«
states, employment states, and states of health. Nothing in the 
mathematical apparatus presented precludes such applications of 
the general model.
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NUMERICAL ILLUSTRATIONS OF AGE-GROUP-SPECIFIC
REPRODUCTIVE VALUES: V(x)

United States, 1980

THE CLOSED MODEL

Nonspatial 
v(0) = 1, r = -.004382

Region of Residence
\ge  USA

0 .997172

5 .984387

I0  .963134

15 .878830

20 .657025

25 .363588

30 .140048

35 .035750

M) .005489

*5 .000270

Spatial: Native Independent 
{v(0)}' = [1 1.114767], r = -.003955

Region of Residence
North Southwest

.993666 1.115866

.974287 1.109284

.948312 1.090949

.868504 .990844

.660341 .728440

.370435 .398433

.140600 .155658

.034534 .041070

.005099 .006513

.000230 .000343

Spatial: Native Dependent 
{v(0)}' = [1 1.206076], r = -.003734

Region of Residence
North Southwest

.991360 1.209208

.970008 1.203963

.945444 1.183206

.866585 1.073770

.658928 .788809

.369416 .431522

.140194 .168604

.034459 .044467

.005094 .007048

.000230 .000371



NUMERICAL ILLUSTRATIONS OF AGE-GROUP-SPECIFIC
REPRODUCTIVE VALUES: V(x)

United States, 1980

2. THE OPEN MODEL

Nonsoatial 
v(0) = 1, r = 0

Spatial: Native Independent 
{v(0)}' = [1 1.119484], r = 0

Spatial: Native Dependent 
{v(0)}' = [1 1.213848], r = 0

Region pf Residence Region of Residence Region of Residence
Aqe USA North Southwest North Southwest

0 .899676 .895842 1.025555 .911484 1.111341

5 .907816 .899543 1.038182 .912565 1.126503

10 .907813 .895985 1.040023 .906833 1.128874

15 .844127 .837347 .959679 .845318 1.041714

20 .639623 .645250 .713727 .649339 .774508

25 .357180 .364551 .393748 .365758 .427214

30 .138467 .139036 .154759 .139237 .167905

35 .035510 .034293 .041002 .034313 .044479

40 .005478 .005087 .006528 .005087 .007080

45 .000270 .000230 .000344 .000230 .000373



NUMERICAL ILLUSTRATIONS OF AGE-GROUP-SPECIFIC
REPRODUCTIVE VALUES: V(x)

THE CLOSED MODEL

1940

Spatial: Native Independent 
{v(0)}' = [1 1.357758], r = -.004145

Region of Residence
Age North Southwest

0 .993510 1.358686
5 .974510 1.349313
10 .949154 1.325917
15 .870775 1.204002
20 .662817 .885469
25 .371158 .484845
30 .140645 .189560
35 .034531 .050022
40 .005098 .007933
45 .000230 .000418

Spatial: Native Dependent 
{v(0)}' = [1 1.526788], r = -.004041

Region of Residence
North Southwest

.992217 1.529131

.972265 1.519619

.947950 1.492588

.870280 1.354970

.662309 .996609

.370732 .545844

.140479 .213405

.034501 .056294

.005096 .008923

.000230 .000469

1960

Spatial: Native Independent Spatial: Native Dependent
{v(0)}' = [1 1.099056], r = -.004263 {v(0)}' = [1 1.172291], r = -.004153

Region of Residence Region of Residence
Aqe North Southwest North Southwest

0 .993241 1.101747 .990765 1.178622
5 .973548 1.096592 .969016 1.175883
10 .948092 1.076618 .944861 1.152153
15 .868121 .977401 .865083 1.045093
20 .659840 .719116 .657715 .768467
25 .370092 .393304 .369096 .420321
30 .140467 .153603 .140189 .164110
35 .034517 .040508 .034468 .043256
40 .005098 .006422 .005095 .006853
45 .000230 .000338 .000230 .000360
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NUMERICAL ILLUSTRATIONS OF AGE-GROUP-SPECIFIC
REPRODUCTIVE VALUES: V(x)

THE OPEN MODEL

Spatial: Native Independent 
{v(0)}' = [1 1.375062], r = 0

Region of Residence
North Southwest

.897515 1.250800

.900046 1.267382

.895912 1.270744

.837851 1.173943

.646487 .874112

.365089 .482780

.139118 .189915

.034299 .050339

.005087 .008018

.000230 .000423

Spatial: Native Dependent 
{V(0)}' = [1 1.551827], r = 0

Region of Residence
North Southwest

.899246 1.415434

.900278 1.434745

.896285 1.437508

.838186 1.327304

.646350 .988141

.364845 .545697

.139022 .214599

.034283 .056857

.005086 .009051

.000230 .000477

Spatial: Native Independent 
{v(0)}' = [1 1.103402], r = 0

Region of Residence
North Southwest

.889661 1.006612

.894414 1.020651

.892014 1.022110

.834384 .943539

.643384 .702814

.363788 .388081

.138846 .152553

.034269 .040413

.005086 .006434

.000230 .000339

Spatial: Native Dependent 
{v(0)}' = [1 1.179572], r = 0

Region of Residence
North Southwest

.891497 1.079335

.893575 1.097291

.890749 1.097292

.832018 1.012461

.641216 .753744

.363020 .415809

.138694 .163319

.034243 .043241

.005084 .006881

.000230 .000363



NUMERICAL ILLUSTRATIONS OF AGE-GROUP-SPECIFIC
REPRODUCTIVE VALUES: V(x)

United States, 1980

THE CLOSED MODEL

Nonspatial 
v(0) = 1, r = -.004366

Region of Residence
yqe USA

3 .997207

5 .984503

0 .963325

5 .878980

■0 .657005

!5 .363524

¡0 .140038

Í5 .035748

'40 .005490

i-5 .000271

Spatial: Native Independent 
{v(0)}' = [1 1.114767], r = -.003955

Region of Residence
North Southwest

.993666 1.115866

.974287 1.109284

.948312 1.090949

.868504 .990844

.660341 .728440

.370435 .398433

.140600 .155658

.034534 .041070

.005099 .006513

.000230 .000343

Spatial: Native Dependent 
{v(0)}' =  [1 1.206076], r = -.003734

Region of Residence
North Southwest

.991360 1.209208

.970008 1.203963

.945444 1.183206

.866585 1.073770

.658928 .788809

.369416 .431522

.140194 .168604

.034459 .044467

.005094 .007048

.000230 .000371
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NUMERICAL ILLUSTRATIONS OF AGE-GROUP-SPECIFIC
REPRODUCTIVE VALUES: V(x)

United States, 1980

THE OPEN MODEL

Nonspatial 
v(0) = 1, r = 0

Spatial: Native Independent 
{v(0)}' = [1 1.119484], r = 0

Spatial: Native Dependent 
{v(0)}' = [1 1.213848], r = 0

Reoion of Residence Region ef Residence Region of Residence
USA North Southwest North Southwest

.899676 .895842 1.025555 .911484 1.111341

.907816 .899543 1.038182 .912565 1.126503

.907813 .895985 1.040023 .906833 1.128874

.844127 .837347 .959679 .845318 1.041714

.639623 .645250 .713727 .649339 .774508

.357180 .364551 .393748 .365758 .427214

.138467 .139036 .154759 .139237 .167905

.035510 .034293 .041002 .034313 .044479

.005478 .005087 .006528 .005087 .007080

.000270 .000230 .000344 .000230 .000373



Spatial: Native Independent Spatial: Native Dependent
(v(0)}' = [1 1.357758], r = -.004145 {v(0)}' = [1 1.526788], r = -.004041

NUMERICAL ILLUSTRATIONS OF AGE-GROUP-SPECIFIC
REPRODUCTIVE VALUES: V(x)

THE CLOSED MODEL

1940

Region of Residence Region of Residence
Age North Southwest North Southwest

0 .993510 1.358686 .992217 1.529131
5 .974510 1.349313 .972265 1.519619
10 .949154 1.325917 .947950 1.492588
15 .870775 1.204002 .870280 1.354970
20 .662817 .885469 .662309 .996609
25 .371158 .484845 .370732 .545844
30 .140645 .189560 .140479 .213405
35 .034531 .050022 .034501 .056294
40 .005098 .007933 .005096 .008923
45 .000230 .000418 .000230 .000469

1960

Spatial: Native Independent Spatial: Native Dependent
{v(0)}' =  [1 1.1099056, r = -.004263 {v(0)}' = [1 1.172291], r = -.004153

Region of Residence Region of Residence
Aqe North Southwest North Southwest

0 .993241 1.101747 .990765 1.178622
5 .973548 1.096592 .969016 1.175883
10 .948092 1.076618 .944861 1.152153
15 .868121 .977401 .865083 1.045093
20 .659840 .719116 .657715 .768467
25 .370092 .393304 .369096 .420321
30 .140467 .153603 .140189 .164110
35 .034517 .040508 .034468 .043256
40 .005098 .006422 .005095 .006853
45 .000230 .000338 .000230 .000360
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NUMERICAL ILLUSTRATIONS OF AGE-GROUP-SPECIFIC
REPRODUCTIVE VALUES: V(x)

THE OPEN MODEL

Spatial: Native Independent 
{v(0)}' = [1 1.375062], r = 0

Region of Residence
North Southwest

.897515 1.250800

.900046 1.267382

.895912 1.270744

.837851 1.173943

.646487 .874112

.365089 .482780

.139118 .189915
0 .034299 .050339
.Q05O87jg> .008018
<TÕ0ü 230 .000423

Spatial: Native Independent 
{v(0)}' = [1 1.103402], r = 0

Region of Residence
North Southwest

.889661 1.006612

.894414 1.020651

.892014 1.022110

.834384 .943539

.643384 .702814

.363788 .388081

.138846 .152553

.034269 .040413

.005086 .006434

.000230 .000339

Spatial: Native Dependent 
{v(0)}' = [1 1.551827], r = 0

Region of Residence
North Southwest

.899246 1.415434

.900278 1.434745

.896285 1.437508

.838186 1.327304

.646350 .988141

.364845 .545697

.139022 .214599

.034283 .056857

.005086 .009051

.000230 .000477

Spatial: Native Dependent 
{v(0)}' = [1 1.179572], r = 0

Region of Residence
North Southwest

.891497 1.079335

.893575 1.097291

.890749 1.097292

.832018 1.012461

.641216 .753744

.363020 .415809

.138694 .163319

.034243 .043241

.005084 .006881

.000230 .000363


