
-

INDEX
Introduction
Orphanhood
Mortality
Fertility
Fiesults
Conclusion
Tables
Fieferences

Introduction

The current paper was written as a voluntary contribution to the Seminar on Orphanhood and Adult Mortality in the past, to be held by the Latin American Centre for Demography (CELADE) in December 1984. It is a by-product of a study undertaken together with Frans van Foppel , which has the objective of comparing indirect estimates of adult mortality based on proportions orphaned among newly weds according to their marriage registere, with those drewn up on basis af recorded deatris and census data for the period.

The purpose of this document is to simulate the effect of mortality differentiads by parity on the proportions orphaned in a stable population calculated with the fertility and mortality schedules pertaining to The Hague in the decade tetween 1870 and 1800 . Details on the data as well as a mare elatorate accourt of the sources of variatility of values estimated with the orphanhood approach ta indirect mortality versus "true" mortality levels, are to be found in the empirical study referred to above. Drie of the assumptions
uriderlying the method was selected for this simlilation, notably that there is no relation tetween the mortality of parents and their parity. The assumption is required to deal with the potential bias due to the fact that the probability of a parent's mortality experience being recorded in the sample is proportional to his or her number of children.

The reason for selecting this particular assumption for scrutiny is that, though overall fertility is moderate, legitimate fertility is quite high in the Hague around the end of the $X I X$ "th century. The "late and non-universal marriage" mechanism of fertility regulation is functioning in a rather exemplary fastion. It"s reassuring to see reality behave according to expectations: based, in this case, on the empirical generalisations that have found their way into theory since Hajnal' Ξ pioneering work on European nuptialityfertility relations (J.Hajnal,1765). The point is that legitimate fertility being "natural"; for the group of women evposed to the risk of childtearing: the incidence of high parity will not be exceptional, specially in the later phases of the reproductive cycle. The presence of clear mortality differentials ty marital status led us to consider the hypothesis that a bias might be caused by this combination of factors. The simulation is limited to the female sex.

Froportions not-orphaned are calculated using mortality and fertility measures, referring to the total population, the ever-married subgroup and encorporating the simulated effect of parity specifis mortality. These results were compared
amorig each other and with the otiserved proportions notorpinaried.

Al1 calculations were carried out on a programmable hand calculator, except for a small linear programming exercise that was run on the computing facility of the Catholic University of Tilburg. Fart of the work was done between other research activities, during office hours. On both accounts I acknowledge my gratitude to Fraf. G. A. B. Frinking for the opportunity to carry out this piece of work.

Orehanhood

The calculation of the proportions not-orphaned by s-year age groups: $x: x+5$, referred to as FND, departs from the familiar (Hill-Trussely 1977) Expression for all parities:

$$
\int_{N}^{N+5} \int_{y}^{2} e^{-r(a+x)} f(a) 1(a+x) d a d x
$$

$$
\begin{equation*}
\underset{5}{\text { FNO }}= \tag{1}
\end{equation*}
$$

$$
\int_{N}^{N+5} \int_{y}^{z} e^{-r(a+x)} f(a) 1(a) d a d x
$$

The beginning of the reproductive period is indicated by y : the end by z. This contimuaus-form Enpression is approximated in discrete terms by:

$$
\begin{aligned}
& =-5-r: a+;+5 ; \\
& \sum^{f} \underbrace{* L} a 5^{*} a+;+2.5
\end{aligned}
$$

$$
\begin{equation*}
\sum_{y}^{z-5} e^{-r(a+i+5)} 5^{f} a 5^{* L} a \tag{2}
\end{equation*}
$$

Ir order to incorporate the effect of parity, the mortality/fertility factor in (2) is weighted:

FiNO =

$$
\sum^{z-5} e^{-r(a+x+5)} \sum_{i=1}^{B} \text { Prop }^{i} * f^{i} * L^{i}
$$

where Prop: ${ }_{5}^{i}$ is the proportion of the women of ages $a, a+5$
i with parity i, who had children in the interval and f refers to the birth-order specific fertility rate for 5 a
children of both sexes. $\quad \frac{L}{}$ i is the life table survivorship
function expressing the mortality history of women transgressing lapses with parities up to \underline{i}. The assumption
implied in the weighting procedire is that the parity specifig murtality level at a partichlar age is jdentical for al women of a given parity regardless of the spacirig of births over their previous reproductive history. There will, in reality, be variability around an average levels but it is assumed that the effects are negligitle. The dash in the proportions refers to the fact that only women who had children are included. That is, there are no frop" ore here (in contrast to the froportions used below). It is understood that the mortality of women with mo children, including unmarried women, is not included.

Mor゙ヨlity

Farity specific life tables were calculated by assuming that the level difference in mortality between ever-married and never-married subpopulations over the reproductive age span is caused by the childbearing process. This is a plausjble assumption considering the fact that female mortality in the reproductive years is observed to be higher in the life table for married women than in that for the total populations in contrast to mortality arter the age of 50. The differential for meles also poirts in the opposite direction: married men have lower mortality than bachelors. Table 1 testifies to the statements with fespect to the femsle population.

The lifis table for newer-marriEd wonten wes Ealeliated from ever-married and total life tablej through:
$1(x)^{\text {tot }}=\left(\right.$ Frop.ev. mar) $* 1(x)^{\text {Ev. mar }}+$ (Frop. nev.mar) *l (x) nev. mar. therefores

$$
\begin{equation*}
1(x)^{\text {nev. mar }}=\left[1(x)^{\text {tot. }} \text { - Frop.ev. mar } w l(x)^{\text {ev.mar }}\right. \text {)/(Frop. nev. mar) } \tag{4}
\end{equation*}
$$

The proportions ever-married were estimated by fitting the Coale nuptiality schedule (A. Coale, 1971) to the proportions single in the 25 to 30 and the 45 to 50 age ranges, available to the author on basis of empirical data. The level difference between the mortality of ever-married versus never-married women is formulated as:

$$
\begin{equation*}
Y(x)^{i}=\frac{i}{F} \frac{*}{(x)}+b * Y(x) \quad \text { rev.mar. } \tag{5}
\end{equation*}
$$

where a and \underline{b} refer to the intercept and slope of the least squares linear regression of the logit of the survivor function of the ever-married agairst the never-married populations (with logit $I(x)$ indicated as $Y(x)$) and $F(x)$ refers to an indicator of the average parity of the women at the age in question. The basic assumption is, then, that a is proportional to parity during the reproductive years in the Eirass relational mortality system (w. Erass, 1968). The parity indicator used was the average number of children borne per married woman from the mean age at marriage in the stable popujation up to age \therefore. This may require some explanation. It
\therefore G.Ear that guarell parity is not a useful measure in this Gontext, becalse there are women in the denominator, who are not exposed to the rist of childbearirig, due to the fact that they are not married. On the other hand, taking marital fertility as the yardstick will not do either, since the implicit assumption would be that all women involved were married from the beginning of the reproductive period. The measure of parity used was, therefore, cumulated marital fertility from the mean age at which the women in the age group in question were married in the stable population.

For ages above 50 hybrid values were calculated for the survivorship of women of parity $p, 1(x)^{P}$, as:

EErtility

The estimation of the birth order specific fertility rates and the proportions of women according to parity departs from the assumption that all births are generated at exact time periods S-folds af years before timet, such as t-50,t-45 etc. where t refers to the year in which the orphanhood data were gathered. A cohort approach is applied, following women as they enter marriage and are sutiected to the rist of having children over conserutive s-year periods. Froportions of women according to parity and nlimbers of births by order are calculated for a particular cohort and assumed constant over cohorts. Legitimate fertility rates were useds assuming no illegitimacy. (Though atout 5% of births are illigitimate in The Hague around $18 g 0$ many of the women in question susequentiy marry; The tast at hand is to create a
distribution of births by order, whiz is plausible and consistent with the total number of births in the stable population and which also yiəlds a distribution of women according to parity that adds up to the total number of married fernales.

The general approach is to look at fertility experience in each 5 -year age-group in turn, and after having done so, to links it up with fertility in the cohort up to the beginning of the age group under consideration to obtain measures from the beginning of the reproductive period.

Use 5×-5 to refer to $\frac{5 x}{5}$ \quad, then:

where ${ }^{p-i}$ Frop i is defined as the proportion of women who start the current leap with parity i and have $p-i$ children in the interval.

```
\(F^{P}\) is the number of women of parity \(p\) at the end of age \(5 \times\)
interval \(x, x+5\). The women who start a particular leaf as
```

0
should be treated slightly differently since they $5:-5$
consist of those who left the previous round without children
plus those who entered the "pool" by marriage. Therefore, strictly speaking (7) should be written $a s$:

... 7(a)
in
where N refers to the number of married women $x, *+5$ $5 \times$ years of age. This is, in fact, the procedure that was followed in the calculations. For brevity's sake the form of
(7) will be maintained, it being implied that F includes 5×-5
new entries due to marriage.

It follows from the definition of \int_{5}^{1} Frop $\%$ that we may write: $\sum_{0}^{W} \sum_{i=0}^{i} \operatorname{Frop}_{k-5}^{k}=1$ b'k $\ldots . .(3)$
where wis the terminal parity, taken as 8 in the calculations. Also:
$\sum_{i=1}^{\omega} F_{5}^{p}=\sum_{5}^{m} \ldots \ldots(9)$

The total amount of births these women had are their numbers times the number of children they had in the interval:

If ${ }_{5}^{G} \mathrm{E}$ is defined as the number of births by women who
start the interval with parity p and have q children during the leap; or

, then,
$E_{5}^{m}=\sum_{p=0}^{m_{i}-1}$

with E_{5}^{m} referring to the number of children of birth order II.

alsi satisfied, the number of women by parity can $=$ estimated with (7) and the mumber of births by order with expression (13).

At the beginning of the fertile period $F=0$ in $\quad \forall \quad$ leaving
only the ${ }_{5}^{P-i}$ Frop P unknown. After the first round of calculations the F_{515}^{i} are known, making it possible to solve for the ${ }_{5}^{\mathrm{p-i}}$ Frop 20 and so forth. The calculation procedure used was linear programming, where (10) was minimized under constraints (8) and (11), plus a set of conditions for each proportion to be estimated, which restrict the permitted values to a plausible range.

Eeswlts

The life tables used in the simulation exercise were caiculated by Frans van foppel with the U.S. Dept. of Commerce, Bureau of the Census, CFDA (Arriaga 55.1975) package on tasis of data from the population censuses of the period in combination with deathe from the civil registration system. Data quality checks corroborated our confidence ini the reliatility of the material. Examination of tatle i reveals that there are, as yet, no spectacular mortality declines in the Hague over the three decades under observation. The differentials between the life tables for the total population versus the ever-married populations are interesting, in the sense that mortality is higher in the childbearing years among married women, but lower at more

The fertility regime calculated from official stock and flow data was converted into legitimate rates through the intermediary of a model nuptiality schedule. After the calculations were finished Van Foppel informed me that direct estimates of marital fertility exist. The rates in question are lower over the major part of the reproductive range. Their use in the simulation would have led to a distribution with fewer women in the high parity categories. The issue at hand is that the procedure followed would tend to exaggerate mortality differentials, rather than underestimate them. In any case it is evident that those females that participate in the childbearing process; do so according to a schedule with high intensity and late localisation.

A comparison of the $1(25+N) / 1(25)$ estimated from the simulated proportions-not-orphaned through the Hill-Trussel regression coefficients with those calculated directly from the various life tables shows that our crude approximation leads to acceptable agreement (Table 2). The proportions-notorphaned, as well as the $1(25+N) / 1(25)$ are similar for the ever married population to those for the total female populations; for the same reason: the denominator is smaller in the ever married group, while the deficits due to higher mortality in the reproductive years are partly for totally, as in the 1870-60 tatles) made up for by lower mortality thereafter.

That is to say that the pattern of divergence of the
nortality levels of the two groups $i s$ such that compensatory effects cause the broad measures of adult mortality to de more alite than we would expect from face value examination of their life tables. Thus, taking the proportions-notorphaned derived from the ever-married population as an approximation of those from the total population, as is actually done in the estimation procedures would lead to Estimates of survival that are close. This is clear upon comparing the $1(25+N) / 1(25)$ derived from the ever-married proportion-not-orphaned with the observed values in the total population. Furthermores the direction of the bias is not necessarily such, that the survival estimates based on the ever- married population are uriderestimates. In the calculations that follow the life tables for the $1870-79$ Feriod were used, a period for which the bias would be in the contrary direction.

Comparing the proportions-not-orphaned calculated with those recorded in the marriage registers of the period (also takeri up in table 2) we observe a degree of consistency in the order of magnitude of the mortality levels implied which inispires confidence in the method. No disconcerting irregularities have appeared as yet. Froceedirg now, to the last item in the paperg we present the simulated levels of mortality and the terminal distribution of women by parity in table ت. It needs no elaboration that the conditions Eimulated are not to be considered as moderate: there are Clear mortality differentials and high proportions or women in the high parity categories. If the simulated froportione-not-orphaned encorporating the effect of parity specific mortality (Tabie 4) are compared with the proportions-mot-
arphaned calculated directly from the $1970-79$ life tatles the bias that results is not at all alarming. The direction of the bias is to underestimate mortality slightly.

Eesides the factors mentioned above to account for the comfortably small differences between proportions-notorphaned in the ever-married and the total female populations: the height of the mortality level plays a role here. However large the differential may be in mortality levels in the later phases of the fertile period, and however large the proportion of high parity women may be, the number of women who survive to the ages in question is no more than around half of the birth cohort. If overall fertility rates at these ages are low, so are birth order specific rates, Even though a large proportion of all births are of orders over 4. These factors contribute to the fact that the final weight that fertility of very high order receives is small.

Conclusion

The simulation exercise undertaken departing from mortality and fertility schedules for the city of The Hague in the second half of the XIX'th century, in order to gain some insight into the potentially disruptive effect of mortality differentials according to parity, permits the conclusion that it is unlikely that the non-validity of the assumption of independance between mortality and parity is a significant cause of bias in the application of the orphanhood method of indirect mortality estimation in this particular case.

The application of indireat estimation of adult mortality to The Hague, was not intended to add to gur knowledge about it's level of mortality but about the performance of the method. It is therefore only interesting to know whether the non-validity of a particular assumption might have biased the results, if generalisation of the finding to other situations is perinitted. The conditions prevailing are typical for those Existing in historical and contemporary populations with defective statistics: high mortality and marital fertilitys plus the existerice of mortality differentials between the ever-married and single-populations. The fashion in which these factors were combined in the simulation of the effect of mortality differentials was designed to bring out any biassing potential which is consitent, within reason, with the stable parameters of our model population. The fact that no significant disturbances were generated is seen as an argument in favor of the robustness of the method from nonvalidity of the assumption studied.

Finally the fact that the calculation of proportions-notorphaned was done with a hand calculator, albeit a programmatbe one, and ied to acceptable resultss demonstrates thet a certain degree of independance from "mechanical" procedures is attainables without the irifrestructure trat was applied in the process of generatine these standard procedures. This might be useful in situations where the data are not amenable for handling with tabulated values and so forth: because they are grouped in inconventional age Eategories, or becalise their numbers are so low that random fluatuations exclude the use of five-year ege groups.

Table 12． $1(x)$ and ${ }_{5} q$ values in abridged life tables over \exists decades，late XIX＇th century；Total female Fopulation；The Hague

\times	$1850-1859$		$1860-1869$		$1870-1879$	
	1（x）	$q(x)$	1 （：）	$q(x)$	$1(x)$	q（ x ）
15	． 6.3271	． 02289	． 62600	． 02839	． 62494	． 02722
20	． 61823	． 02776	． 60823	． 02791	． 60793	． 0.3237
25	． 60107	． 0.3498	． 59125	． 0.3691	． 58825	． 03622
30	． 58005	． 04612	． 56943	． 03979	． 56671	． 04070
35	． 55336	． 04926	． 54677	． 05101	． 54374	． 04964
40	． 52610	． 05125	． 51888	． 05358	． 51666	． 04559
45	． 49914	． 06263	． 49108	． 05570	． 49311	． 05059
50	． 46788	． 08525	． 46373	． 07224	． 46816	． 06978
55	． 42799	． 10143	． 43022	． 02805	． 43549	． 08176
60	． 58548	． 1.3962	． 38760	． 13906	． 39989	.12207
65	． 3.3088	． 20559	． 3.3570	． 19385	． 35107	.19021
70	． 26285	． 30383	． 26901	． 31063	． 28430	． 30580
75	． 18299	． 43.363	． 18545	． 41700	． 19736	． 43.352
80	． 10346	1.00000	.10812	1.00000	． 11105	1.00000

Table 1b． $1(x)$ and ${ }_{5} q$ values in abridged life tables over 3 decades，late XIX＇th century；Ever－Married female Fopulation；The Hague

\times	1350－1859		1860－1369		1870－1879	
	1（x）	$q(x)$	1（x）	$q(x)$	1（x）	q（x）
15	． 6.3271	． 02289	． 62500	． 02859	． 62494	． 02722
20	． 61825	． 04497	． 60823	．03411	． 6079 3	．03825
25	． 57043	． 04520	． 53748	． 050.35	． 58467	． 04142
30	． 56.374	． 04878	． 55790	． 04702	． 56045	． 04337
35	． 53624	． 05176	． 5.3167	． 0.5679	． 5.3587	． 05144
40	． 50338	． 05400	． 50148	． 05788	． 50830	． 04.344
45	． 48093.	． 05970	． 47245	． 05495	． 48267	．04930
50	． 45212	． 08.388	． 44647	． 07405	． 46230	． 06534
55	． 41419	． 09696	． 41.343	． 09447	． 43209	． 08084
60	． 37403	． 1.3537	． 37437	． 13746	． 39716	． 11359
65	． 32340	． 20720	． 32271	． 19041	． 35213	． 19041
70	． 256.57	． 30037	． 26143	． 31067	． 28508	． 30113
75	． 17938	． 48893	． 18021	． 41534	． 19923	． 42003
S0	.10064	1.00000	.10536	1.00000	． 11555	1.00000

Table 2a. Froportions-not-orphaned, by 5 year age groups, calculated with fenale life tatles for three decades, late XIX'th century, The Hague

Life Tables for Ever-Married and Total female Fopulations

\times	1850-1859		1860-1869		1870ー-187	
	tot	ev.mar	tot	ev.mar	tot	ev.mar
20	. $75 \overline{5} \overline{2} 2$. $74 \overline{8182}$.764 5	.75117	. 78025	. 78123
25	. 67405	. 67078	. 68709	. 67594	. 70838	. 71163
30	. 57868	. 57720	. 5929.3	. 584.31	. 61770	. 62289
35	. 46898	. 46849	. 48266	. 47647	. 50716	. 51376
40	. 35001	. 34971	. 36191	. 35773	. 38193	. 38914

Table 2b. $1(25+N) / 1(25)$ derived from table 2a with Hill-Trussel regression coefficients for conditional survival probabilities for three decades, late XIX'th century, The Hague

N	1850-1859		1560-1367		$1970-1879$	
	tot	Ev.mar	tot	ev.mar	tot	ev.mar
25	. 77989	. 77418	. 79649	. 77664	. 80670	. 80784
30	. 71775	. 71417	. 73145	. 71954	. 75.343	. 75664
35	. 64068	. 63883	. 65600	. 646.36	. 68204	. 68729
40	. 54571	. 54479	. 56101	. 55.53	. 58765	. 59455
45	. 43072	. 42992	. 44468	. 4.3905	. 46732	. 47513

Table 2b. $1(25+N) / 1(25)$ calculated from table 1 for three decades, late XIX"th century, The Hague

N	1250-1859		1560-1869		1870-1879	
	tat	ev.mar	tot	ev.mar	tot	Ev. mar ${ }^{-1}$
25	- $77 \overline{741}$. 76575	. $7 \overline{8} 4 \overline{3}$.75001	. 77585	.79070
30	. 71205	. 70151	. 72754	. 70375	. 74031	. 73903
35	. 63583	. 6.3849	. 65556	. 63725	. 67980	. 67929
40	. 55048	. 54774	. 56440	. 54965	. 57680	. 60227
45	. 43730	. 43424	. 45479	. 44500	. 483 BO	. 48759

Table 2c. Froportions-not-orphaned, by 5 year age groups, otserved in marriage registers? late XIX"th century, The Hague 新

$-1867-1870$	$1879-1880$	
20	.7531	.759
25	.6657	.6764
30	.5851	.6916
35	.34514	.4745
40	.3626	

[^0] this seminar for a more elaborate account
 1830, far the Hague

:	1	2	$\frac{p}{2}$	r_{4}^{i}	${ }_{5}$	6	7	8
$2 \overline{5}$. 59665	. 58.550	. 57022	. 55685	. 543.39	. 54.359	. 54339	. 54539
\bigcirc	. 58266	. 57273	. 56275	. 55271	. 54263	. 54263	. 54263	. 54263
35	. 568.36	. 56129	. 55419	. 54707	. 5399.3	. 5.3993	. 53993	. 53993
40	. 545.32	. 53937	. 53341	. 52744	. 52146	. 51547	. 50948	. 50349
45	. 51494	. 50922	. 50.350	. 49778	. 49205	. 48633	. 48062	. 47490
50	. 48440	. 47897	.47354	. 46812	. 46271	. 45750	. 45190	.44652
55	. 45275	. 44767	. 44260	.43753	. 43247	. 42742	. 42237	. 41734
60	. 41615	. 41148	. 40682	. 40216	. 39751	. 39286	. 38823	. 38.360
65	. 36896	. 36483	. 36069	. 35656	. 35244	. 348.32	. 34421	. 34011
70	. 29871	. 29536	. 29201	. 28867	. 285.33	. 28200	. 27867	. 27535
75	. 20875	. 20641	. 20407	. 20174	. 19941	. 19708	. 19475	. 19245
80	. 12107	. 11772	. 118.36	.11700	. 11565	. 11430	. 11295	. 11161

Table 3b. Froportion of married women with terminal parity indicated in simulation, late XIX'th century, The Hague

Table 4. Froportions-not-orphaned, by 5 year age groups, calculated with simulated parity specific mortality for 1370-1380, The Hague

\cdots	$1870-1830$
20	.7909
25	.7184
30	.6277
35	.5123
40	.3711

Arriaga, Anderson, Heligman,1975, "Computer Frograms for Demographic Analysis', U.S.Dept. of Commerce, Bureau of the Census, Washington D.C.

Erass, W, 1963, "The Demography of Tropical Africa", Frinceton
Coale, A, 1971,'Age Fatterns of Marriage', Fopulation Studies ,July 1771, Vol. 25, nr.2, a\%ford

Hajnal, J, 1965, "European Marriage Fatterns in Ferspective", in Glass, Eversly, 1965, Fopulation in History, Arnold, London

[^0]: * refer ta Van Foppel and bartiemés empirical contribution to

